Skip to main content

Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 232))

Abstract

A nonholonomic system, for short “NH,” consists of a configuration space Q n, a Lagrangian \( L(q,\dot q,t) \), a nonintegrable constraint distribution \( \mathcal{H} \subset TQ \), with dynamics governed by Lagrange-d’Alembert’s principle. We present here two studies, both using adapted moving frames. In the first we explore the affine connection viewpoint. For natural Lagrangians L = T − V, where we take V = 0 for simplicity, NH-trajectories are geodesics of a (nonmetric) connection ∇N H which mimics Levi-Civita’s. Local geometric invariants are obtained by Cartan’s method of equivalence. As an example, we analyze Engel’s (2–4) distribution. This is the first such study for a distribution that is not strongly nonholonomic. In the second part we study G-Chaplygin systems; for those, the constraints are given by a connection φ: T Q → Lie(G) on a principal bundle GQS = Q/G and the Lagrangian L is G-equivariant. These systems compress to an almost Hamiltonian system (T*S, H φ, ΩN H), ΩN H = Ωcan + (J.K), with d(J.K) ≠ = 0 in general; the momentum map J : T*Q → Lie(G) and the curvature form K : T Q → Lie(G)* are matched via the Legendre transform. Under an s ε S dependent time reparametrization, a number of compressed systems become Hamiltonian, i.e., ΩN H is sometimes conformally symplectic. Anecessary condition is the existence of an invariant volume for the original system. Its density produces a candidate for conformal factor. Assuming an invariant volume, we describe the obstruction to Hamiltonization. An example of a Hamiltonizable system is the “rubber” Chaplygin’s sphere, which extends Veselova’s system in T*S O(3). This is a ball with unequal inertia coefficients rolling without slipping on the plane, with vertical rotations forbidden. Finally, we discuss reduction of internal symmetries. Chaplygin’s “marble,” where vertical rotations are allowed, is not Hamiltonizable at the compressed T*S O(3) level. We conjecture that it is also not Hamiltonizable when reduced to T*S 2.

The authors thank the Brazilian funding agencies CNPq and FAPERJ: a CNPq research fellowship (JK), a CNPq post-doctoral fellowship at Berkeley (PMR), a FAPERJ visiting fellowship to Rio de Janeiro (KE). (JK) thanks the E. Schrödinger Institute, Vienna, for financial support during Alanfest and the Poisson Geometry Program, August 2003.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R., Marsden, J. [1994], Foundations of Mechanics, 2nd revised ed., Perseus Publishing, Boulder, CO.

    Google Scholar 

  • Arnold, V. I. [1989], Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, New York; 1st ed., 1978.

    Google Scholar 

  • Arnold, V. I., Kozlov, V. V., Neishtadt, A. I. [1988], Mathematical aspects of classical and celestial mechanics, in Arnold, V. I., ed., Dynamical Systems III, Springer-Verlag, New York.

    Google Scholar 

  • Bates, L. [2002], Problems and progress in nonholonomic reduction, Rep. Math. Phys., 49:2–3, 143–149.

    Article  MATH  MathSciNet  Google Scholar 

  • Bates, L., Cushman, R. [1999], What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., 44:1–2, 29–35.

    Article  MATH  MathSciNet  Google Scholar 

  • Bates, L., Śniatycki, J. [1993], Nonholonomic reduction, Rep. Math. Phys., 32:1, 99–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Blackall, C. J. [1941], On volume integral invariants of non-holonomic dynamical systems, Amer. J. Math., 63:1, 155–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloch, A. M. [2003], Nonholonomic Mechanics and Control, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., Murray, R. M. [1996], Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136, 21–99.

    Article  MATH  MathSciNet  Google Scholar 

  • Bocharov, A.V., Vinogradov, A.M. [1977], The Hamiltonian form of mechanics with friction, nonholonomic mechanics, invariant mechanics, the theory of refraction and impact, Appendix II in Kuperschmidt, B. A. and Vinogradov, A. M., “The structure of Hamiltonian mechanics,” Russian Math. Surveys, 42:2, 177–243.

    Google Scholar 

  • Borisov, A.V., Mamaev, I. S. [2001], Chaplygin’s ball rolling problem is Hamiltonian, Math. Notes (Mat. Z.), 70:5, 793–795.

    MathSciNet  Google Scholar 

  • Borisov, A. V., Mamaev, I. S. [2002], Obstacle to the reduction of nonholonomic systems to the Hamiltonian form, Dokl. Phys. USSR, 47:12, 892–894.

    Article  MathSciNet  Google Scholar 

  • Borisov, A. V., Mamaev, I. S. [2002a], On the history of the development of the nonholonomic dynamics, Regular Chaotic Dynam., 7:1, 43–47.

    Article  MATH  MathSciNet  Google Scholar 

  • Borisov, A. V., Mamaev, I. S. [2002a], The rolling body motion of a rigid body on a plane and a sphere: Hierarchy of dynamics, Regular Chaotic Dynam., 7:2, 177–200.

    Article  MATH  MathSciNet  Google Scholar 

  • Borisov A. V., Mamaev I. S., Kilin A. A. [2002], The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics, Regular Chaotic Dynam., 7:2, 201–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Bryant, R. [1994], Lectures on the Geometry of Differential Equations, Fall 1994 André Aisenstadt Lectures, Centre de Recherche Mathématique, Montreal, in preparation; unpublished lecture notes available at http://www.cimat.mx/gil.

    Google Scholar 

  • Cantrijn, F., de Léon, M., Marrero, J. C., de Diego, D. [1998], Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys., 42:1–2, 25–45.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrijn, F., de Léon, M., de Diego, D. [1999], On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, 12, 721–737.

    Article  MATH  MathSciNet  Google Scholar 

  • Cantrijn, F., Cortés, J., de Léon, M., de Diego, D. [2002], On the geometry of generalized Chaplygin systems, Math. Proc. Cambridge Philos. Soc., 132, 323–351.

    MATH  MathSciNet  Google Scholar 

  • Cartan, É. [1910], Le système de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm., 27:3, 109–192.

    MathSciNet  Google Scholar 

  • Cartan, É. [1926], La théorie des groupes finis et continus et la géométrie différentielle, traitées par la méthode du repère mobile: Leçons professées à la Sorbonne (rédigées par Jean Leray), Gauthier-Villars, Paris, 1951.

    Google Scholar 

  • Cartan, É. [1928], Sur la represéntation géométrique des systèmes matériels non holonomes, Proc. Internat. Congr. Math. Bologna, 4, 253–261.

    MathSciNet  Google Scholar 

  • Cartan, É [1937], Leçons sur la théorie des espaces a connexion projective, Gauthier-Villars, Paris.

    MATH  Google Scholar 

  • Cartan, É. [2001], Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by Élie Cartan at the Sorbonne in 1926–27, World Scientific, River Edge, NJ, 2001 (translated from the 1960 Russian edition by Vladislav V. Goldberg; foreword by S. S. Chern; preface to the Russian edition by S. P. Finikov).

    Google Scholar 

  • Cendra, H., Lacomba, E. A., Reartes, W. [2001], The Lagrange-d’Alembert-Poincaré equations for the symmetric rolling sphere, in Proceedings of the 6th Dr. Antonio A. R. Monteiro Congress of Mathematics (BahÍa Blanca, 2001), 19–32, Departamento de Matemática, Instituto de Matemática, Universidad Nacional del Sur, BahÍa Blanca, Argentina; MR1919465 (2003g:70021).

    Google Scholar 

  • Cendra, H., Marsden, J. E., Ratiu, T. S. [2001], Geometric mechanics, Lagrangian reduction and nonholonomic systems, in Enguist, B., and Schmid, W., eds., Mathematics Unlimited: 2001 and Beyond, Springer-Verlag, New York, 221–273.

    Google Scholar 

  • Cendra, H., Ibort, A., de Léon, M., de Diego, D. [2004] Ageneralization of Chetaev’s principle for a class of higher order non-holonomic constraints, J. Math. Phys., submitted.

    Google Scholar 

  • Chaplygin, S. A. [1911], On the theory of the motion of nonholonomic systems: Theorem on the reducing factor, Mat. Sb., 28, 303–314.

    Google Scholar 

  • Chaplygin, S. A. [1981], Selected Works on Mechanics and Mathematics, Nauka, Moscow.

    Google Scholar 

  • Chaplygin, S. A. [2002], On a ball’s rolling on a horizontal plane, Regular Chaotic Dynam., 7:2, 131–148; original paper in Math. Sb., 24 (1903), 139–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., and Griffiths, P. A. [1991], Exterior Differential Systems, Mathematical Sciences Research Institute Publications, Vol. 18, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Clemente-Gallardo, J., Mashke, B., van der Schaft, A. J. [2001], Kinematical constraints and algebroids, Rep. Math. Phys., 47:3, 413–429.

    Article  MATH  MathSciNet  Google Scholar 

  • Cortés, J. [2002], Geometric, Control and Numerical Aspects of Nonholonomic Systems, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Cortés, J., de Léon, M. [1999], Reduction and reconstruction of the dynamics of nonholonomic systems, J. Phys. A Math. Gen., 32, 8615–8645.

    Article  MATH  Google Scholar 

  • Cortés, J., de Léon, M., de Diego, D., MartÍnez, S. [2003], Geometric description of vakonomic and nonholonomic dynamics: Comparison of solutions, SIAM J. Control Optim., 41:5, 1389–1412.

    Article  MATH  Google Scholar 

  • Courant, T. J. [1990], Dirac manifolds, Trans. Amer. Math. Soc., 319:2, 631–661.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushman, R., Hermans, J., Kemppainen, D. [1995], The rolling disk, in Nonlinear Dynamical Systems and Chaos, Progress in Nonlinear Differential Equations and Their Applications, Vol. 19, 21–60, Birkhäuser, Basel.

    Google Scholar 

  • Cushman, R., Kemppainen, D., Śniatycki, J., Bates, L. [1995], Geometry of nonholonomic constraints, Rep. Math. Phys., 36:2–3, 275–286.

    Article  MATH  MathSciNet  Google Scholar 

  • Cushman, R., Bates, L. [1997], Global Aspects of Classical Integrable Systems, Birkhäuser, Basel, 1997.

    MATH  Google Scholar 

  • Cushman, R., Śniatycki, J. [2002], Nonholonomic reduction for free and proper actions, Regular Chaotic Dynam., 7, 61–72.

    Article  MATH  Google Scholar 

  • Dazord, P. [1994], Mécanique hamiltonienne en présence de contraintes, Illinois J. Math., 38, 148–175.

    MATH  MathSciNet  Google Scholar 

  • Dragović, V., Gajić, B., Jovanović, B. [1998], Generalizations of classical integrable nonholonomic rigid body systems, J. Phys. A, 31:49, 9861–9869.

    Article  MathSciNet  MATH  Google Scholar 

  • Duistermaat, J. J. [2000], Chaplygin’s sphere, in Cushman, R., Duistermaat, J. J., and Śniatycki, J., Chaplygin and the Geometry of Nonholonomically Constrained Systems, in preparation; arXiv.org/abs/math.DS/0409019.

    Google Scholar 

  • Eisenhart, L. P. [1925], Riemannian Geometry, Princeton University Press, Princeton, NJ; 5th printing, 1964.

    Google Scholar 

  • Ehlers, K. [2002], The geometry of nonholonomic three-manifolds, in Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations, University of North Carolina at Wilmington, Wilmington, NC.

    Google Scholar 

  • Fedorov, Yu. N. [1989], Two integrable nonholonomic systems in classical dynamics, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 38–41 (in Russian).

    Google Scholar 

  • Fedorov, Yu. N., Kozlov, V. V. [1995], Various aspects of n-dimensional rigid body dynamics, in Kozlov, V. V., ed., Dynamical Systems in Classical Mechanics, AMS Translations (Series 2), Vol. 168, AMS, Providence, RI.

    Google Scholar 

  • Fedorov, Yu. N., Jovanovic, B. [2003], Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and geodesic flows on homogeneous spaces, J. Nonlinear Sci., to appear; arXiv: math-ph/0307016.

    Google Scholar 

  • Flanders, H. [1963], Differential Forms with Applications to the Physical Sciences, Academic Press, New York.

    MATH  Google Scholar 

  • Gardner, R. [1989], The Method of Equivalence and its Applications, SIAM, Philadelphia.

    MATH  Google Scholar 

  • Grossman, D. A. [2000], Torsion-free path geometries and integrable second order ODE systems, Selecta Math. (N.S.), 6, 399–442.

    Article  MATH  MathSciNet  Google Scholar 

  • Guillemin, V., Sternberg, S. [1980], The moment map and collective motion, Ann. Phys., 1278, 220–253.

    MathSciNet  Google Scholar 

  • Hamel, G. [1949], Theoretische Mechanik: Eine einheitliche Einführung in die gesamte Mechanik, revised ed., Grundlehren der Mathematischen Wissenschaften, Vol. 57, Springer-Verlag, Berlin, New York, 1978.

    MATH  Google Scholar 

  • Haller, S., Rybicki, T. [1999], On the group of diffeomorphisms preserving a locally conformal symplectic structure, Ann. Global Anal. Geom., 17, 475–502.

    Article  MATH  MathSciNet  Google Scholar 

  • Haller, S., Rybicki, T. [2001], Symplectic reduction for locally conformal symplectic manifolds, J. Geom. Phys., 37, 262–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Hertz, H. [1899], The Principles of Mechanics Presented in a New Form by Heinrich Hertz, with an Introduction by H. von Helmholtz, Macmillan, London, New York.

    Google Scholar 

  • Hicks, N. J. [1965], Notes on Differential Geometry, Van Nostrand, New York.

    MATH  Google Scholar 

  • Hughen, K. [1995], The Geometry of Sub-Riemannian Three-Manifolds, Ph.D. thesis, Duke University, Durham, NC.

    Google Scholar 

  • Ibort, A., de Léon, M., Marrero, J. C., de Diego, D. [1999], Dirac brackets in constraind dynamics, Fortschr. Phys., 47:5, 459–492.

    Article  MATH  MathSciNet  Google Scholar 

  • Iliyev, Il. [1985], On the conditions for the existence of the reducing Chaplygin factor, P. M. M. USSR, 49:2, 295–301.

    MathSciNet  Google Scholar 

  • Jovanovic, B. [2003], Some multidimensional integrable cases of nonholonomic rigid body dynamics, Regular Chaotic Dynam., 8:1, 125–132.

    Article  MATH  MathSciNet  Google Scholar 

  • Kazarian, M. R., Montgomery, R., Shapiro, B. [1997], Characteristic classes for the degenerations of two-plane fields in four dimensions, Pacific J. Math., 179:2, 355–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Kobayashi, S., Nomizu, K. [1963], Foundations of Differential Geometry, Vol. 1, Wiley, New York, London.

    MATH  Google Scholar 

  • Kobayashi, M. H., Oliva, W. M. [2003], A note on the conservation of energy and volume in the setting of nonholonomic mechanical systems, Qual. Theory Dynam. Systems, 5 (2004), 255–283.

    Google Scholar 

  • Koiller, J. [1992], Reduction of some classical non-holonomic systems with symmetry, Arch. Rational Mech. Anal., 118, 113–148.

    Article  MATH  MathSciNet  Google Scholar 

  • Koiller, J., Rodrigues, P. R., Pitanga, P. [2001], Nonholonomic connections following Élie Cartan, An. Acad. Brasileira Ciencias, 73:2, 165–190.

    MATH  MathSciNet  Google Scholar 

  • Koiller, J., Rios, P. M. [2001], Nonholonomic systems with symmetry allowing a conformally symplectic reduction, in Delgado, J., Lacomba, E. A., and Pérez-Chavela, E., eds., Proceedings of the 4th International Symposium on Hamiltonian Systems and Celestial Mechanics (Mexico 2001), Kluwer, Dordrecht, the Netherlands, to appear; arXiv: math-ph/0203013.

    Google Scholar 

  • Koiller, J., Rios, P. M., Ehlers, K. [2002], Moving frames for cotangent bundles, Rep. Math. Phys., 49:2–3, 225–238.

    Article  MATH  MathSciNet  Google Scholar 

  • Koiller, J. [2003], Analytical Mechanics, Bull. Amer. Math. Soc. (N.S.), 40:3, 405–419.

    Article  Google Scholar 

  • Koon, W. S., Marsden, J. E. [1997], The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems, Rep. Math. Phys., 40, 21–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Koon, W. S., Marsden, J. E. [1998], Poisson reduction for nonholonomic mechanical systems with symmetry, Rep. Math. Phys., 42, 101–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Kozlov, V. V. [2002], On the integration theory of equations of nonholonomic mechanics, Regular Chaotic Dynam., 7:2, 161–176.

    Article  MATH  Google Scholar 

  • Kummer, M. [1981], On the construction of the reduced phase space of a Hamiltonian system with symmetry, Indiana Univ. Math. J., 30, 281–291.

    Article  MATH  MathSciNet  Google Scholar 

  • Kupka, I., Oliva, W. M. [2001], The Non-Holonomic Mechanics, J. Differential Equations, 169, 169–189.

    Article  MATH  MathSciNet  Google Scholar 

  • Levi, M. [1996], Composition of rotations and parallel transport, Nonlinearity, 9, 413–419.

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis, A. D. [1998], Affine connections and distributions with applications to nonholonomic mechanics, Rep. Math. Phys., 42:1–2, 135–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Marle, C. M. [1995], Reduction of constrained mechanical systems and stability of relative equilibria, Comm. Math. Phys., 174, 295–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Marle, C. M. [1998], Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42:1–2, 211–229.

    Article  MATH  MathSciNet  Google Scholar 

  • Marle, C. M. [2003], On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, Banach Center Publ., 59, 223–242.

    Article  MathSciNet  Google Scholar 

  • Marsden, J. E., Weinstein, A. [2001], Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121–130.

    Article  MathSciNet  Google Scholar 

  • Marsden, J. E., Weinstein, A. [2001], Some comments on the history, theory, and applications of symplectic reduction, in Landsman, N. P., and Pflaum, M., eds., Quantization of Singular Symplectic Quotients, Birkhäuser, Boston, 2001.

    Google Scholar 

  • Montgomery, R. [1991], How much does the rigid body rotate? A Berry’s phase from the 18th century, Amer. J. Phys., 59:5, 394–398.

    Article  MathSciNet  Google Scholar 

  • Montgomery, R. [2002], A Tour of Sub-Riemannian Geometries, Their Geodesics, and Applications, Mathematical Surveys and Monographs, Vol. 91, AMS, Providence, RI.

    Google Scholar 

  • Moseley, K. [2001], The Geometry of Sub-Riemannian Engel Manifolds, Ph.D. thesis, Duke University, Durham, NC, 2001.

    Google Scholar 

  • Neimark, J. I., Fufaev, N.A. [1972], Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, Vol. 33, AMS, Providence, RI.

    MATH  Google Scholar 

  • Oliva, W. M. [2002], Geometric Mechanics, Lecture Notes in Mathematics 1798, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Papastavridis, J. G. [2002], Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems: For Engineers, Physicists and Mathematicians, Oxford University Press, Oxford, UK (reviewed in Koiller [2003]).

    MATH  Google Scholar 

  • Pars, L. A. [1965], A Treatise on Analytical Dynamics, Wiley, New York.

    MATH  Google Scholar 

  • Poincaré, H. [1901], Sur une forme nouvelle des équations de la mécanique, C. R. Acad. Sci. Paris, 132, 369–371.

    MATH  Google Scholar 

  • Ramos, A. [2004], Poisson Structures for Reduced Non-Holonomic Systems, J. Phys. A Math. Gen., 37 (2004), 4821–4842.

    Article  MATH  MathSciNet  Google Scholar 

  • Salamon, S. [1989], Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics 201, Longman Scientific and Technical, Essex, UK.

    MATH  Google Scholar 

  • Schneider, D., Nonholonomic Euler-Poincare equations and stability in Chaplygin’s sphere, Dynam. Systems Intern. J., 17:2, 87–130.

    Google Scholar 

  • Sharpe, R.W. [1997], Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program, Graduate Texts in Mathematics, Vol. 166, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  • Śniatycli, J. [1998], Nonholonomic Noether theorem and reduction of symmetries, Rep. Math. Phys., 42:1–2, 5–23.

    MathSciNet  Google Scholar 

  • Sńiatycki, J. [2001], Almost Poisson spaces and nonholonomic singular reduction, Rep. Math. Phys., 48:1–2, 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Śniatycki, J. [2002], The momentum equation and the second order differential condition, Rep. Math. Phys., 213, 371–394.

    Article  Google Scholar 

  • Sommerfeld, A. [1952], Lectures on Theoretical Physics: Mechanics, Academic Press, New York.

    MATH  Google Scholar 

  • Stanchenko, S. V. [1985], Non-holonomic Chaplygin systems, P. M. M. USSR, 53:1, 11–17.

    MathSciNet  Google Scholar 

  • Tavares, J. N. [2002], About Cartan Geometrization of Non-Holonomic Mechanics, preprint, Centro de Matemática, Universidade do Porto, Porto, Portugal; available at www.fc.up.pt/cmup.

    Google Scholar 

  • van der Schaft, A., Mashke, B. M. [1994], On the hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34, 225–233.

    Article  MATH  MathSciNet  Google Scholar 

  • Vaisman, I., Locally conformal symplectic manifolds, Internat. J. Math. Math. Sci., 8:3, 521–536.

    Google Scholar 

  • Vershik, A. M., Gerhskovich, V. [1994], Nonholonomic dynamical systems, geometry of distributions and variational problems, in Arnol’d, V. I., and Novikov, S. P., eds., Dynamical Systems VII, Encyclopedia of Mathematical Sciences, Vol. 16, Springer-Verlag, New York.

    Google Scholar 

  • Vershik, A. M., Fadeev, L.D. [1981], Lagrangian mechanics in invariant form, Selecta Math. Sov., 1:4, 339–350.

    Google Scholar 

  • Veselov, A. P., Veselova, L. E. [1986], Flows on Lie groups with a nonholonomic constraint and integrable non-Hamiltonian systems, Funkt. Anal. Prilozhen., 20:4, 65–66 (in Russian); Functional Anal. Appl., 20:4, 308–309 (in English).

    MathSciNet  Google Scholar 

  • Veselov, A. P., Veselova, L. E. [1988], Integrable nonholonomic systems on Lie groups, Mat. Z., 44:5, 604–619, 701 (in Russian); Math. Notes, 44:5–6 (1989), 810–819 (in English).

    MATH  MathSciNet  Google Scholar 

  • Wade, A. [2000], Conformal Dirac structures, Lett. Math. Phys., 53, 331–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Warner, F. [1971], Foundations of Differentiable Manifolds and Lie Groups, Scott Foresman, Glenview, IL.

    MATH  Google Scholar 

  • Weber, R. W. [1986], Hamiltonian systems with constraints and their meaning in mechanics, Arch. Rational Mech. Anal., 91, 309–335.

    MATH  MathSciNet  Google Scholar 

  • Whittaker, E. T. [1988], A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, with an Introduction to the Problem of Three Bodies, reprint of the 1937 ed., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Zenkov, D. V. [1995], The geometry of the Routh problem, J. Nonlinear Sci., 5:6, 503–519.

    Article  MATH  MathSciNet  Google Scholar 

  • Zenkov, D. V., Bloch, A. M. [2000], Dynamics of the n-dimensional Suslov problem, J. Geom. Phys., 34:2, 121–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Zenkov, D. V., Bloch, A. M. [2003], Invariant measures of nonholonomic flows with internal degrees of freedom, Nonlinearity, 16, 1793–1807.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Alan Weinstein on his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Ehlers, K., Koiller, J., Montgomery, R., Rios, P.M. (2005). Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization. In: Marsden, J.E., Ratiu, T.S. (eds) The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol 232. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4419-9_4

Download citation

Publish with us

Policies and ethics