Skip to main content

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 58))

  • 961 Accesses

Abstract

In this chapter and in the following one we describe the dynamic programming approach to control problems, focusing our attention on the role played by the semiconcavity property and the structure of the singularities of the value function. The theory of optimal control is very broad and has a large variety of applications; we do not aim to give an exhaustive treatment of the subject, but we choose some model problems and develop the theory in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographical notes

  1. Albano P., On the singular set for solutions to a class of Hamilton-Jacobi equations, NoDEA Nonlinear Differential Equations Appl.9 (2002), 473–497.

    Article  MATH  MathSciNet  Google Scholar 

  2. Albano P., Cannarsa P., Singularities of semiconcave functions in Banach spaces, in Stochastic Analysis, Control, Optimization and Applications, W.M. McEneaney, G.G. Yin, Q. Zhang (eds.), Birkhäuser, Boston, (1999), 171–190.

    Google Scholar 

  3. Bardi M., Capuzzo Dolcetta I., Optimal control and viscosity solutions of Hamilton-Jacobi equations, Birkhäuser, Boston, 1997.

    MATH  Google Scholar 

  4. Berkovitz, L.D., Optimal Control Theory, Applied Mathematical Sciences, 12. Springer-Verlag, New York, Heidelberg, 1974.

    MATH  Google Scholar 

  5. Bressan A., Lecture notes on the mathematical theory of control, International School for Advanced Studies, Trieste, 1993.

    Google Scholar 

  6. Cannarsa P., Regularity properties of solutions to Hamilton-Jacobi equations in infinite dimensions and nonlinear optimal control, Differential Integral Equations2 (1989), 479–493.

    MATH  MathSciNet  Google Scholar 

  7. Cannarsa P., Frankowska H., Some characterizations of optimal trajectories in control theory, SIAM J. Control Optim.29 (1991), 1322–1347.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cannarsa P., Frankowska H., Value function and optimality conditions for semilinear control problems. Appl. Math. Optim.26 (1992), 139–169.

    Article  MATH  MathSciNet  Google Scholar 

  9. Cannarsa P., Frankowska H., Value function and optimality condition for semilinear control problems. II. Parabolic case. Appl. Math. Optim.33 (1996), 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cannarsa P., Pignotti C., Semiconcavity of the value function for an exit time problem with degenerate cost, Matematiche (Catania)55 (2000), suppl. 2, 71–108.

    MATH  MathSciNet  Google Scholar 

  11. Cannarsa P., Pignotti C., Sinestrari C., Semiconcavity for optimal control problems with exit time, Discrete Contin. Dynam. Systems6 (2000), 975–997.

    Article  MATH  MathSciNet  Google Scholar 

  12. Cannarsa P., Soner H.M., Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal.13 (1989), 305–323.

    Article  MATH  MathSciNet  Google Scholar 

  13. Cannarsa P., Tessitore M.E., On the behaviour of the value function of a Mayer optimal control problem along optimal trajectories, in Control and estimation of distributed parameter systems (Vorau, 1996) 81–88, Internat. Ser. Numer. Math., 126, Birkhäuser, Basel, (1998).

    MathSciNet  Google Scholar 

  14. Caroff N., Caractéristiques de l’équation d’Hamilton-Jacobi et conditions d’optimalité en contrôle optimal non linéaire, Ph.D.Thesis, Université Paris IX Dauphine, 1994.

    Google Scholar 

  15. Cesari L., Optimization—theory and applications. Problems with ordinary differential equations, Applications of Mathematics 17, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  16. Clarke F.H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

    MATH  Google Scholar 

  17. Clarke F.H., Vinter R.B., The relationship between the maximum principle and dynamic programming, SIAM J. Control Optim.25 (1987), 1291–1311.

    Article  MATH  MathSciNet  Google Scholar 

  18. Filippov, A.F., On certain questions in the theory of optimal control, SIAM J. Control1 (1962), 76–84.

    Article  MATH  Google Scholar 

  19. Fleming W.H., Rishel R. W., Deterministic and stochastic optimal control, Springer Verlag, New York, 1975.

    MATH  Google Scholar 

  20. Fleming W.H., Soner H.M., Controlled Markov processes and viscosity solutions, Springer Verlag, Berlin, 1993.

    MATH  Google Scholar 

  21. Ishii H., Lions P.-L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differential Equations83 (1990), 26–78.

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions P.L., Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.

    MATH  Google Scholar 

  23. Lee E.B., Markus L., Foundations of Optimal Control Ttheory, John Wiley, New York, 1968.

    Google Scholar 

  24. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko, E.F., The Mathematical Theory of Optimal Processes. Interscience Publishers, John Wiley & Sons, Inc., New York, London, 1962.

    MATH  Google Scholar 

  25. Sinestrari C., Regularity along optimal trajectories of the value function of a Mayer problem, to appear in ESAIM Control Optim. Calc. Var.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

(2004). Optimal Control Problems. In: Semiconcave Functions, Hamilton—Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, vol 58. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4413-X_7

Download citation

  • DOI: https://doi.org/10.1007/0-8176-4413-X_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4336-2

  • Online ISBN: 978-0-8176-4413-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics