An Application of Complex Network Theory to German Commuting Patterns

  • Sean P. Gorman
  • Roberto Patuelli
  • Aura Reggiani
  • Peter Nijkamp
  • Rajendra Kulkarni
  • Günter Haag
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 102)

Abstract

Simulating the structure and evolution of complex networks is an area that has recently received considerable attention. Most of this research has grown out of the physical sciences, but there is growing interest in their application to the social sciences, especially regional science and transportation. This paper presents a network structure simulation experiment utilizing a gravity model to identify interactions embodied in socio-economic processes. In our empirical case, we consider home-to-work commuting patterns among 439 German labour market districts. Specifically, the paper examines first the connectivity distribution of the German commuting network. The paper next develops a spatial interaction model to estimate the structure and flows in the network concerned. The focus of this paper is to examine how well the spatial interaction model replicates the structure of the German commuting network as compared to complex network models. Finally, the structure of the physical German road network is compared to the spatial flows of commuters across it for a tentative supply-demand comparison.

Keywords

complex networks commuting infrastructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Barabási, A.-L. (2002). Statistical Mechanics of Complex Networks. Review of Modern Physics, 74, 47. CrossRefADSGoogle Scholar
  2. Albert, R., Jeong, H., Barabási, A.-L. (2000). Error and Attack Tolerance in Complex Networks. Nature, 406, 378–382. CrossRefADSGoogle Scholar
  3. Alonso, W. (1978). A Theory of Movements. In N.M. Hansen (Ed.), Human Settlement Systems. Cambridge, Mass. Ballinger. Google Scholar
  4. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E. (2000). Classes of Small-World Networks. Proc. Nat. Acad. Sci. USA, 97, 11149–11152. PubMedCrossRefADSGoogle Scholar
  5. Barabási, A.-L. (2001). The Physics of the Web. Physics World, July 2001. Google Scholar
  6. Barabási, A.-L., Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286, 509–512. CrossRefMathSciNetGoogle Scholar
  7. Binder, J., Haag, G., Rabino, G. (2003). Analysis and Modelling of Commuter Flows: Application to the Regions of Stuttgart and Turin. Jahrbuch der Regionalwissenschaften, 23, 117–139. Google Scholar
  8. Bowen, J. (2002). Network Change, Deregulation, and Access in the Global Airline Industry. Economic Geography, 78(4), 425–439. CrossRefGoogle Scholar
  9. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J. (2000). Network Robustness and Fragility: Percolation on Random Graphs. Physical Review Letters, 85(25), 5468–5471. PubMedCrossRefADSGoogle Scholar
  10. Carey, H.C. (1858). Principles of Social Science. Philadelphia: J. Lippincott. Google Scholar
  11. Chen, Q., Hyunseok, C., Govindan, R., Sugih, J., Schenker, S., Willinger, W. (2001). The Origin of Power Laws in Internet Topologies Revisited. Paper presented at the IEEE Infocom, 2002. Google Scholar
  12. Cliff, A., Haggett, P., Ord, H. (1979). Graph theory and geography. In R. Wilson, L. Beineke (Eds.), Applications of Graph Theory (Vol. 293–326). London: Academic Press. Google Scholar
  13. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S. (2001). Breakdown of the Internet Under Intentional Attack. Physical Review Letters, 86(16), 3682–3685. PubMedCrossRefADSGoogle Scholar
  14. Cörvers, F., Hensen, M. (2003). The Regionalization of Labour Markets by Modelling Commuting Behaviour. Paper presented at the 43rd ERSA, Jyvaeskylae. Google Scholar
  15. Erdos, P., Renyi, A. (1960). On the Evolution of Random Graphs (Vol. 5): Publication of the Mathematical Institute of the Hungarian Academy of Science. Google Scholar
  16. Fotheringham, A.S. (1983). A New Set of Spatial-Interaction Models: The Theory of Competing Destinations. Environment and Planning A, 15, 15–36. CrossRefGoogle Scholar
  17. Fotheringham, A.S., O’Kelly, M.E. (1989). Spatial Interaction Models: Formulations and Applications. Dordrecht: Kluwer Academic Publishers. Google Scholar
  18. Grubesic, T.H., O’Kelly, M.E., Murray, A.T. (2003). A Geographic Perspective on Telecommunication Network Survivability. Telematics and Informatics, 20(1), 51–69. CrossRefGoogle Scholar
  19. Haag, G., Binder, J., Koller, M. (2001). Modellgestützte Analyse zur Regionalen Entwicklung von Beschäftigungsvolumen, Lohnsummen und Beitragseinnahmen. Nuernberg and Stuttgart: Institute of Labour and Employment Research (IAB) and STASA. Google Scholar
  20. Isard, W. (1960). Methods of Regional Analysis. Cambridge: MIT Press. Google Scholar
  21. Johansson, B., Klaesson, J., Olsson, M. (2003). Commuters’ Non-linear Response to Time Distances. Journal of Geographical Systems, 5(3), 315–329. CrossRefADSGoogle Scholar
  22. Jörnsten, K., Thorsen, I., Ubøe, J. (2004). Replication/Prediction Problems in the Journey to Work. Environment and Planning A, 36(2), 347–364. CrossRefGoogle Scholar
  23. Kulldorf, G. (1955). Migration Probabilities, Lund Studies in Geography, Series B: No. 14. Lund, Sweden: Department of Geography, Lund University. Google Scholar
  24. Kwan, M.-P., Murray, A.T., O’Kelly, M.E., Tiefelsdorf, M. (2003). Recent Advances in Accessibility Research: Representation, Methodology and Applications. Journal of Geographical Systems, 5, 129–138. CrossRefADSGoogle Scholar
  25. Latora, V., Marchiori, M. (2002). Is the Boston subway a small-world network? Physica A, 314, 109–113. MATHCrossRefADSGoogle Scholar
  26. Li, L., Alderson, D., Willinger, W., Doyle, J. (2004). A First-Principles Approach to Understanding the Internet’s Router-Level Topology, ACM SIGCOMM Computer Communication Review, 34(4), 3–14. CrossRefGoogle Scholar
  27. McFadden, D. (1974). Conditional Logit Analysis of Qualitative Choice Behavior. In P. Zarembka (Ed.), Frontiers in Econometrics (pp. 105–142). New York: Academic Press. Google Scholar
  28. McFadden, D. (1979). Qualitative Methods for Analysing Travel Behaviour of Individuals: Some Recent Developments. In D.A. Hensher, P.R. Stopher (Eds.), Behaviour Travel Modelling (pp. 279–318). London: Croom Helm. Google Scholar
  29. Nijkamp, P. (1975). Reflections on Gravity and Entropy Models. Regional Science and Urban Economics, 5, 203–225. CrossRefGoogle Scholar
  30. Nijkamp, P., Reggiani, A. (1992). Interaction, Evolution and Chaos in Space. Berlin Heidelberg: Springer-Verlag. Google Scholar
  31. Ravenstein, E.G. (1885). The Laws of Migration. Journal of the Royal Statistical Society, 48(2), 167–235. Google Scholar
  32. Reggiani, A. (2004). Evolutionary Approaches to Transport and Spatial Systems. In P.R. Stopher, K. Button, K. Haynes, D.A. Hensher (Eds.), Handbook of Transport Geography and Spatial Systems (pp. 237–253). Amsterdam: Elsevier. Google Scholar
  33. Rouwendal, J., Nijkamp, P. (2004). Living in Two Worlds: A Review of Home-to-Work Decisions. Growth and Change, 35, 287–303. CrossRefGoogle Scholar
  34. Schintler, L.A., Gorman, S.P., Reggiani, A., Patuelli, R., Nijkamp, P. (2005). Scale-Free Phenomena in Communications Networks: A Cross-Atlantic Comparison. In A. Reggiani, L.A. Schintler (Eds.), Methods and Models in Transport and Communications. Cross Atlantic Perspectives (pp. 201–220). Berlin: Springer-Verlag. Google Scholar
  35. Schintler, L.A., Kulkarni, R.G. (2000). The Emergence of Small World Phenomenon in Urban Transportation Networks: An Exploratory Analysis. In A. Reggiani (Ed.), Spatial Economic Science: New Frontiers in Theory and Methodology (pp. 419–434). Berlin: Springer. Google Scholar
  36. Sen, A., Smith, T.E. (1995). Gravity Models of Spatial Interaction Behavior. Heidelberg and New York: Springer. Google Scholar
  37. Sheffi, Y. (1985). Urban Transportation Networks. Englewood Cliffs, NJ: Prentice-Hall. Google Scholar
  38. Stewart, J.Q. (1941). In Inverse Distance Variation for Certain Social Influences. Science, 93, 89–90. CrossRefADSGoogle Scholar
  39. Thorsen, I., Gitlesen, J.P. (1998). Empirical Evaluation of Alternative Model Specifications to Predict Commuting Flows. Journal of Regional Science, 38(2), 273–292. CrossRefGoogle Scholar
  40. Thorsen, I., Uboe, J., Naelig;vdal, G. (1999). A Network Approach to Commuting. J Regional Sci, 39(1), 73–101. CrossRefGoogle Scholar
  41. Watts, D.J., Strogatz, S.H. (1998). Collective Dynamics of Small-World Networks. Nature, 363, 202–204. Google Scholar
  42. White, M.J. (1977). A Model of Residential Location Choice and Commuting by Men and Women Workers. Journal of Regional Science, 17(1), 41–52. PubMedCrossRefGoogle Scholar
  43. White, M.J. (1986). Sex Differences in Urban Commuting Patterns. The American Economic Review, 76, 368–372. Google Scholar
  44. Wilson, A.G. (1967). A Statistical Theory of Spatial Distribution Models. Transportation Research, 1, 253–269. CrossRefADSGoogle Scholar
  45. Wilson, A.G. (1970). Entropy in Urban and Regional Modelling. London: Pion. Google Scholar
  46. Wojahn, O.W. (2001). Airline Network Structure and the Gravity Model. Transportation Research: Part E: Logistics and Transportation Review, 37(4), 267–279. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sean P. Gorman
    • 1
  • Roberto Patuelli
    • 2
  • Aura Reggiani
    • 3
  • Peter Nijkamp
    • 2
  • Rajendra Kulkarni
    • 1
  • Günter Haag
    • 4
  1. 1.George Mason UniversityFairfaxUSA
  2. 2.VU University AmsterdamThe Netherlands
  3. 3.University of BolognaItaly
  4. 4.Steinbeis Transfer Centre Applied System Analysis (STASA)StuttgartGermany

Personalised recommendations