Skip to main content

Sulfur Chemical Moieties in Carbonaceous Materials

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

X-ray Absorption Near Edge Structure (XANES) spectroscopy has been employed to characterize the different chemical structures of sulfur in kerogens, asphaltenes, and coals. Commonalities are found for the sulfur chemistry in these disparate carbonaceous materials. Most of the sulfur is organic, with thiophenic structures typically the most abundant and sulfidic forms also fairly abundant. Oxidized organic sulfur in lesser amounts is found in lowrank coals, in the different fractions of one crude oil, and Type I kerogens. In addition, there is pyrite in the coals and pyrite/elemental sulfur in the kerogens. The sulfur chemistry is shown to reflect the carbon chemistry in kerogens and coals. Type II kerogens have a larger ratio than Type I kerogens of aromatic to saturated carbon. Likewise higher rank coals also have a larger ratio of aromatic to saturated carbon than lower rank coals. Here, it is shown that Type II kerogens and higher rank coals similarly have larger fractions of aromatic sulfur. This important result establishes a relationship between the carbon and sulfur chemistry of these materials. The nitrogen chemistry of the carbonaceous materials was also investigated with XANES. In all of the materials, the nitrogen is almost entirely aromatic with pyrrolic nitrogen being the most abundant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hedges, J.I. and F.G. Prahl (1993). Early diagenesis: Consequences for applications of molecular biomarkers. In: M. Engle and S. Macko (eds), Organic Geochemistry: Principles and Applications. Plenum, New York.

    Google Scholar 

  2. Eglington, G. (1969). The organic chemist’s approach. In: G. Eglington and M.T.J. Murphy (eds.), Organic Geochemistry. Springer-Verlag, New York.

    Google Scholar 

  3. Weite, D.H. (1969). Organic matter in sediments. In: G. Eglington and M.T.J. Murphy (eds.), Organic Geochemistry. Springer-Verlag, New York.

    Google Scholar 

  4. Killops, S.D. and V.J. Killops (1993). An Introduction to Organic Geochemistry, 2nd edn. Longman Scientific and Technical.

    Google Scholar 

  5. Tissot, B.P. and D.H. Weite (1984). Petroleum Formations and Occurrence. Springer-Verlag, New York.

    Google Scholar 

  6. Rullkotter, J. (1993). The thermal alteration of kerogen and the formation of oil. In: M.H. Engel, and S.A. Macko (eds.), Organic Geochemistry: Principles and Applications. Plenum, New York.

    Google Scholar 

  7. White, W.M. (2005). Organic geochemistry. In: Geochemistry (an on-line textbook). Johns Hopkins University Press, in press.

    Google Scholar 

  8. International Committee for Coal petrology (1963). International Handbook of Coal Petrology, 2nd edn. 1963, 1st Supplement 1971. Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  9. Wiltfong, R., S. Mitra-Kirtley, O.C. Mullins, B. Andrews, G. Fujisawa, and J. Larsen (2005). Sulfur speciation in different kerogens by XANES spectroscopy. Energy & Fuels 19, 1971.

    Article  CAS  Google Scholar 

  10. Mitra-Kirtley, S., O.C. Mullins, C.Y. Ralston, D. Sellis, and C. Pareis (1998). Determination of sulfur species in asphaltene, resin, and oil fractions of crude oils. Appl. Spectrosc. 52(12), 1522.

    Article  CAS  Google Scholar 

  11. Huffman, G.P., S. Mitra, F.E. Huggins, N. Shah, S. Vaidya, and F. Lu (1991). Quantitative analysis of all major forms of sulfur in coal by x-ray absorption fine structure spectroscopy. Energy & Fuels 5, 574.

    Article  CAS  Google Scholar 

  12. Mitra-Kirtley, S., O.C. Mullins, J.F. Branthaver, and S.P. Cramer (1993). Nitrogen chemistry of kerogens and bitumens from x-ray absorption near-edge structure spectroscopy. Energy & Fuels 7(6), 1128.

    Article  CAS  Google Scholar 

  13. Mitra-Kirtley, S., O.C. Mullins, J. van Elp, S.J. George, J. Chen, and S.P. Cramer (1993). Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. J. Am. Chem. Soc. 115, 252.

    Article  CAS  Google Scholar 

  14. Mullins, O.C., S. Mitra-Kirtley, J. van Elp, and S.P. Cramer (1993). Molecular structure of nitrogen in coal from XANES spectroscopy. Appl. Spectrosc. 47, 1268.

    Article  CAS  Google Scholar 

  15. Parsons, T.R., M. Takahashi, and B. Margrave (1977). Biological Oceanographie Processes. Pergamon Press, New York.

    Google Scholar 

  16. Ryther, J.H. (1963). Geographic variations in productivity. In: M.N. Hill (ed), The Sea. Wiley, New York.

    Google Scholar 

  17. Geider, R.J. et al. (2001). Primary productivity of planet earth: Biological determinants and physical constraints in terrestrial and aquatic habitats, Global Change Bio. 7, 849.

    Article  Google Scholar 

  18. Hollander, D., F. Behar, M. Vanderbroucke, P. Bertrand, and J.A. McKenzie (1990). Geochemical alteration of organic matter in eutrophic Lake Greifen: Implications for the determination of organic facies and the origin of lacustrine source rocks. Am. Assoc. Petroleum Geologists Stud. Geol. 30, 181.

    Google Scholar 

  19. Canfield, D.E. (1989). Deep Sea Research 36, 121.

    Article  CAS  Google Scholar 

  20. Glenn, C.R. and M.A. Arthur (1985). Chem. Geol. 48, 325.

    Article  CAS  Google Scholar 

  21. Premuzic, E.T., C.M. Benkovitz., J.S. Gaffney, and J.J. Walsh (1982). Org. Geochem. 4, 63.

    Article  CAS  Google Scholar 

  22. Tyson, R.V. (1995). Sedimentary Organic Matter. Chapman and Hall, New York.

    Google Scholar 

  23. Hartnett, H.E., R.G. Keil, J.I. Hedges, and A.H. Devol (1998). Influence of oxygen exposure time on organic carbon preservation in continental margin sediments, Nature 391, 572.

    Article  CAS  Google Scholar 

  24. Berner, R.A. (1980). Early Diagenesis. Princeton University Press, New Jersey.

    Google Scholar 

  25. DeVooys, C.G.N. (1979). Primary production in aquatic environments. In: B. Bolin, E.T. Degens, S. Kempe, and P. Ketner (eds.), The Global Carbon Cycle. Wiley, Chichester.

    Google Scholar 

  26. Meyers, P.A. and R. Ishiwatari (1993). The early diagenesis of organic matter in Lacustrine sediments, In: M.H. Engel, and S.A. Macko (eds), Organic Geochemistry: Principles and Applications. Plenum, New York.

    Google Scholar 

  27. Bluck, B.J. (1969). Introduction to sedimentology, In: G. Eglington, and M.T.J. Murphy (eds), Organic Geochemistry: Methods and Results. Springer-Verlag, New York.

    Google Scholar 

  28. Nedwell, D.B. (1984). The input of mineralization of organic carbon in anaerobic aquatic sediments, Adv. Microb. Ecol. 7, 93.

    CAS  Google Scholar 

  29. Nealson, K.H. and D. Saffarini (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation, Ann. Rev. Microbiol. 48, 311–343.

    Article  CAS  Google Scholar 

  30. Ward, D.M. and M.R. Winfrey (1985). Interactions between methanogenic and sulfate-reducing bacteria in sediments, Adv. Aquatic Microbiol. 3:141.

    Google Scholar 

  31. Widdel, F. (1986). Sulfate-reducing bacteria and their ecological niches in anaerobic bacteria. In: E.M. Barnes, and G.C. Mead (eds), Habitats Other than Man, Blackwell, Oxford, p. 157.

    Google Scholar 

  32. Jorgensen, B.B. (1982). Mineralization of organic matter in the sea bed—the role of sulfate reduction, Nature, 296(Apr.), 15.

    Google Scholar 

  33. Hartgers, W.A., J.F. Lòpez, J.S. Sinninghe Damsté, C. Reiss, J.R. Maxwell, J.O. Grimait (1997). Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds, Geochim. Cosmochim. Acta. 61, 4769.

    Article  CAS  Google Scholar 

  34. Gransch J.A. and J. Posthuma (1973). The origin of sulfur in crudes. In: B. Tissot, F. Bienner, (eds), Advances in Organic Geochemistry, Editions Technip, Paris.

    Google Scholar 

  35. deLeeuw, J.W. and C. Largeau (1993). A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. In: M.H. Engel, and S.A. Macko, (eds.), Organic Geochemistry: Principles and Applications. Plenum, New York.

    Google Scholar 

  36. Sinninghe Damaste, J.S., M.D. Kok, J. Koster, and S. Sehouten (1998). Sulfurized carbohydrates: An important sedimentary sink for organic carbon? Earth Planetary Lett. 164, 7.

    Article  Google Scholar 

  37. Durand, B. and J.C. Monin (1980). Elemental analysis of kerogen (C, H, O, N, S, Fe). In: B. Durand, (ed.), Kerogen: Insoluble Organic Matter from Sedimentary Rocks. Editions Technip, Paris.

    Google Scholar 

  38. Teichmuller, M. (1982). Origin of petrographie constituents of coal, In: E. Stach, M-TH. Mackowsky, M. Teichmuller, G.H. Taylor, D. Chandra, and R. Teichmuller, (Translation and English revision by D.G. Murchison, G.H. Taylor, and F. Zierke), (eds.), Stach ’s Textbook on Coal Petrology. Gebruder Borntraeger, Berlin, Stuttgart.

    Google Scholar 

  39. Moore, L.R. (1969). Geomicrobiology and geomicrobiological attack on sediment organic matter. In: G. Eglington and M.T.J. Murphy, (eds.), Organic Geochemistry : Methods and Results. Springer-Verlag, New York.

    Google Scholar 

  40. Bustin, R.M., A.R. Cameron, D.A. Grieve, and W.D. Kalkreuth (1983). Coal Petrology Its Principles, Methods, and Applications. Geological Association of Canada, Short Course Notes.

    Google Scholar 

  41. Durand, B., M. Parratte, and P. Bertrand (1983). Rev. lust. Fr. Petr., 38, 709.

    CAS  Google Scholar 

  42. Hedges, J.I. (1992). Global biogeochemical cycles: progress and problems, Mar. Chem. 39, 67–93.

    Article  CAS  Google Scholar 

  43. Brocks, J.J. and R.E., Summons (2003). Sedimentary hydrocarbons, biomarkers for early life. In: H.D. Holland, and K.K. Turekian (eds.), Treatise on Geochem. 8, p. 63.

    Article  Google Scholar 

  44. Cooper, B.S. and D.G., Murchinson (1969). Organic geochemistry of coal, In: G. Eglington and M.T.J. Murphy, (eds.), Organic Geochemistry: Methods and Results. Springer-Verlag, New York.

    Google Scholar 

  45. Senftle, J.T., C.R. Landis, and R.L. McLaughlin (1993). Organic petrographie approach to kerogen characterization. In: M.H. Engel, and S.A. Macko, (eds.), Organic Geochemistry: Principles and Applications. Plenum, New York.

    Google Scholar 

  46. Stach, E. (1982). Fundamentals of coal petrology. In: E. Stach, M-TH. Mackowsky, M. Teichmuller, G.H. Taylor, D. Chandra, and R. Teichmuller, (Translation and English revision by D.G. Murchison, G.H. Taylor, and F. Zierke), (eds.), Stach’s Textbook on Coal Petrology. Gebruder Borntraeger, Berlin, Stuttgart.

    Google Scholar 

  47. Davis, A., W. Spackman, and P. Given (1976). Energy Sources 3(1), 55.

    Article  CAS  Google Scholar 

  48. Tissot, B., B. Durand, J. Espitalie, Combaz (1974). Influence of the nature and diagenesis of organic matter in formation of petroleum, Am. Assoc. Pet. Geol. Bull. 58, 499.

    CAS  Google Scholar 

  49. van, Krevelen, D.W. (1961). Coal. Elsevier, Amsterdam.

    Google Scholar 

  50. Whelan, J.K., and C.L. Thompson-Rizer (1993). Chemical methods for assessing kerogen and protokerogen types and maturity. In: M.H. Engel and S.A. Macko (eds.), Organic Geochemistry: Principles and Applications. Plenum, New York.

    Google Scholar 

  51. Vandenbroucke, M. (2003). Kerogen: From types to models to chemical structure, Oil Gas Sci. Tech. 58, 243.

    Article  CAS  Google Scholar 

  52. Talbot, M.R. (1988). The origins of lacustrine oil source rocks: Evidence from the lakes of tropical Africa. In: A.J. Fleet et al, (ed.), Lacustrine Petroleum Source Rocks. Oxford, Blackwell.

    Google Scholar 

  53. Orr, W.L. (1986). Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. In: D. Leythaeuser and J. Rullkötter, eds. Advances in Organic Geochemistry, 10, 499.

    Article  CAS  Google Scholar 

  54. Sinninghe Damsté, J.J., X.F.C. delas Hera, and J.W. de Leeuw (1992). J. Chromatogr. 607, 361.

    Article  Google Scholar 

  55. Sheu, Y. and O.C. Mullins, (eds.) (1995). Asphaltenes, Fundamentals and Applications. Plenum, New York, London.

    Google Scholar 

  56. Pfeiffer, J.H. (1950). The Properties of Asphaltic Bitumen. Elsevier, Amsterdam.

    Google Scholar 

  57. Mullins, O.C. and E.Y. Sheu (eds.) (1998). Structures and Dynamics of Asphaltenes. Plenum, New York.

    Google Scholar 

  58. Chilingarian, G.V. and T.F. Yen (eds.) (1978). Bitumens, Asphalts, and Tar Sands. Elsevier Scientific Publishing Co.: New York.

    Google Scholar 

  59. Groenzin, H. and O.C. Mullins (1999). Asphaltene molecular size and structure. J. Phys. Chem. A 103, 11237.

    Article  CAS  Google Scholar 

  60. Groenzin, H. and O.C. Mullins (2000). Molecular sizes of asphaltenes from different origin. Energy & Fuels 14, 677.

    Article  CAS  Google Scholar 

  61. Scotti, R. and L. Montanari (1998). In: O.C. Mullins, and E.Y. Sheu (eds.), Structures and Dynamics of Asphaltnees. Plenum, New York, Ch 3.

    Google Scholar 

  62. Chilingarian, G.V. (1981). In: J.W. Bunger, and N.C. Li (eds.), Chemistry of Asphaltenes. American Chemical Society, Washington, D.C.

    Google Scholar 

  63. Yen, T.F. (ed.) (1975). The Role of Trace Metals in Petroleum. Ann Arbor Science Inc., Michigan.

    Google Scholar 

  64. Stohr, J. (1992). NEXAFS Spectroscopy. Springer-Verlag, Berlin.

    Google Scholar 

  65. Wagner, C., W. Riggs, L. Davis, and J. Moulder (1979). Handbook of X-ray Photoelectron Spectroscopy. Perkin Eimer Corporation, Eden Prairie, MN.

    Google Scholar 

  66. Newville, M., Consortium for Advanced Radiation Sources. University of Chicago, Chicago, IL.

    Google Scholar 

  67. Pfalzer, P., J.P. Urbach, M. Klemm, S. Horn, M.L. denBoer, A.I. Frenkel (1999). Elimination of self-absorption in fluorescence hard x-ray absorption spectra, Phys. Rev. B. 60, 9335.

    Article  CAS  Google Scholar 

  68. Bunker, G. (1988). Biophysics Collaborative Access Team Report: Basic Techniques for EXAFS.

    Google Scholar 

  69. Goulon, J.C. Goulon-Ginet, R. Cortes, J.M. Dubois (1982). J. Phys. 43, 539.

    CAS  Google Scholar 

  70. Margaritondo, G. (1988). Introduction to Synchrotron Radiation. Oxford University Press, New York.

    Google Scholar 

  71. Lytle, F.W., R.B. Greegor, D.R. Sandstrom, B.C. Marquies, J. Wong, C.L. Spiro et al. (1988). Nucl. Instrum. Methods 226, 542.

    Google Scholar 

  72. Chen, C.T. (1987). Concept and design procedure for cylindrical element monochromators for synchrotron radiation, Nucl. Instrum. Methods Phys. Sect. A. 256, 595.

    Article  Google Scholar 

  73. Cramer, S.P., O. Tench., M. Yocum, H. Kraner, L. Rogers, V. Radeka et al. (1991). X-ray absorption fine structure. In: S.S. Hassain, (ed.), Proc. of the 6th International XAFS Conference. Ellis Horwood, Chichester, p. 640.

    Google Scholar 

  74. Owen, L.B. (1987). DOE Oil Shale Sample Bank, Quarterly Report, July-September 1987, January-March, 1987, Salt Lake City, Utah, Terra-Tek, Inc. Report numbers: TR 87-89 and TR 88-14.

    Google Scholar 

  75. Larsen, J.W, C. Islas-Flores, M.T. Aida, P. Opaprakasit, P. Painter (2005). Kerogen chemistry 2. Low-temperature anhydride formation in kerogens, Energy Fuels, 19, 145.

    Article  CAS  Google Scholar 

  76. Zeszotarski, J.C., R.C. Chromik, R.P. Vinci, M.C. Messmer, R. Michels, and J.W. Larsen (2004). Imaging and mechanical property measurements of kerogen via nanoindentation, Geochim. Cosmochim. Acta. 68(20), 4113.

    Article  CAS  Google Scholar 

  77. Saxby, J.D. (1970). Isolation of kerogen in sediments by chemical methods, Chem. Geol. 6, 173.

    Article  CAS  Google Scholar 

  78. Waldo, G.S., O.C. Mullins, J.E. Penner-Hahn, and S.P. Cramer (1992). Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption Spectroscopy, Fuel, 71, 53.

    Article  CAS  Google Scholar 

  79. Vorres, K.S. (1990). The argonne premium coal sample program, Energy & Fuels 4, 420.

    Article  CAS  Google Scholar 

  80. WinXAS software, Ressler, T, Fritz-Haber-Institut der MPG, Department of Inorganic Chemistry, Faradayweg, Berlin.

    Google Scholar 

  81. George, G.N. and M.L. Gorbaty (1989). Sulfur K-edge absorption Spectroscopy of petroleum asphaltenes and model compounds, J Am. Chem. Soc. 111, 3182.

    Article  CAS  Google Scholar 

  82. Sarret, G., T. Mongenot, J. Connan, D. Sylvie, M. Kasrai, G. Michael Bancroft et al. (2002). Sulfur speciation in kerogens of the Orbagnoux deposit (Upper Kimmeridgian, Jura) by XANES Spectroscopy and pyrolysis, Org. Geochem. 33(8), 877–895.

    Article  CAS  Google Scholar 

  83. Vairavamurthy, M.A., D. Maletic, S. Wang, B. Manowitz, T. Eglington, and T. Lyons (1997). Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure Spectroscopy, Energy & Fuels, 11, 546.

    Article  CAS  Google Scholar 

  84. Olivella, M.A., J.M. Palacios, A. Vairavamurthy, J.C. del Rio, and F.X.C. delas Heras (2002). A study of sulfur functionalities in fossil fuels using destructive- (ASTM and Py-GC-MS) and non-destructive- (SEM-EDX, XANES and XPS) techniques, Fuel, 81(4), 405.

    Article  CAS  Google Scholar 

  85. Eglington, T, J.E. Irvine, A. Vairavamurthy, W. Zhou, and B. Manowitz (1994). Formation and diagenesis of macromolecular organic sulfur in Peru margin sediments, Org. Geochem. 22, 781.

    Article  Google Scholar 

  86. Buchanan, H., K.J. Coombs, P.M. Murphy, and C. Chaven (1993). Energy & Fuels, 7, 219.

    Article  CAS  Google Scholar 

  87. Spiro, C.E., J. Wong, F. Lytle, R.B. Greegor, D. Maylotte, and S. Lampson (1984). Science 226, 48.

    Article  CAS  Google Scholar 

  88. Hussain, Z., E. Umbach, D.A. Shirley, J. Stohr, and J. Feldhaus (1982). Nucl. Instrum. Methods 195, 115.

    Article  CAS  Google Scholar 

  89. Shah, N., R.A. Keogh, P.E. Huggins, G.P. Huffman, A. Shah, B. Ganguly et al. (1990). Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 5(3), 784.

    Google Scholar 

  90. Mitra-Kirtley, S., O.C. Mullins, J. Chen, J. van Elp, S. George, C.T. Chen et al. (1992). Nitrogen chemical structure in DNA and related molecules by X-ray absorption spectroscopy, Biochim. Biophys. Acta, 1132, 249.

    Google Scholar 

  91. Copelin, B.C. (1964). Identification of 2-quinolones in a California crude oil, Anal. Chem. 36(12), 2274.

    Article  CAS  Google Scholar 

  92. Petersen, J.C., R.B. Barbour, S.M. Dorrence, F.A. Barbour, and R.V. Hel (1971). Molecular interactions of asphalt. Tentative identification of 2-quinolones in asphalt and their interaction with carboxylic acids present. Anal. Chem. 43(11), 1491.

    Article  CAS  Google Scholar 

  93. Mitra-Kirtley, S., O.C. Mullins, J. van Elp, and A.P. Cramer (1994). Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 39(3), 820.

    CAS  Google Scholar 

  94. Kelemen, S.R., M.L. Gorbaty, and P.J. Kwiatek (1994). Quantification of nitrogen forms in argonne premium coals. Energy & Fuels 8(4), 896.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mitra-Kirtley, S., Mullins, O.C. (2007). Sulfur Chemical Moieties in Carbonaceous Materials. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_6

Download citation

Publish with us

Policies and ethics