Skip to main content

Carbon X-ray Raman Spectroscopy of PAHs and Asphaltenes

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

The application of x-ray Raman spectroscopy (XRRS) to gain information about the local structure of carbonaceous systems including complex polycyclic aromatic hydrocarbons (PAHs) and asphaltenes is discussed in this chapter. This novel approach to directly probe carbon type in such systems has become practical only recently with the help of intense new synchrotron x-ray sources and innovation in spectrograph design. XRRS is the energy loss version of x-ray absorption spectroscopy (XAS) a technique well established to characterize local structure and chemistry in an element-specific manner. At the carbon K-edge conventional XAS lies in the so-called soft x-ray region, and its application to numerous systems and experimental conditions encounters severe problems related to the submicron path length of soft x-rays and electrons. In contrast, XRRS is based on hard x-rays (6–10 keV) and provides a means for obtaining bulk carbon XAS with the advantage of a much more penetrating probe (~mm path length). We will discuss the theoretical and experimental background of XRRS, and will show with the help of several examples how this technique enables understanding of the structure of asphaltenes and other related materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chilingarian, G.V. and T.F. Yen (1978). Bitumens, Asphalts, and Tar Sands. Elsevier Scientific Pub. Co., New York; Tissot, B.P. and D.H. Welte (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin; Bunger, J.W. and N.C. Li (eds.) (1984). Chemistry of Asphaltenes. American Chemical Society, Washington, DC; Mullins, O.C. and E.Y. Sheu (eds.) (1998). Structures and Dynamics of Asphaltenes Plenum, New York.

    Google Scholar 

  2. Sheu, E.Y. and O.C. Mullins (eds.) (1995). Asphaltenes: Fundamentals and Applications. Plenum, New York.

    Google Scholar 

  3. Calemma, V., P. Iwanski, M. Nali, R. Scotti, and L. Montanari (1995). Energy & Fuels 9(2), 225; Scotti, R. and L. Montanari (1998). In: Mullins, O.C. and E.Y. Sheu (eds.), Structures and Dynamics of Asphaltenes, Plenum, New York.

    Article  CAS  Google Scholar 

  4. Groenzin, H. and O.C. Mullins (1999). Asphaltene molecular size and structure. J. Phys. Chem. A 103(50), 11237.

    Article  CAS  Google Scholar 

  5. Groenzin, H. and O.C. Mullins (2006). Asphaltene Molecular Size and Weight by Time-Resolved Fluorescence Depolarization. Chapter 2, this book.

    Google Scholar 

  6. Zajac, G.W., N.K. Sethi, and J.T. Joseph (1994). Scanning Microsc. 8(3), 463.

    CAS  Google Scholar 

  7. Sharma, A., H. Groenzin, A. Tomita, and O.C. Mullins (2002). Probing order in asphaltene and aromatic ring systems by HRTEM. Energy & Fuels 16(2), 490; Sharma, A. and O.C. Mullins (2006). Insights into Molecular and Aggregate Structures of Asphaltenes Using HRTEM. Chapter 8, this book.

    Article  CAS  Google Scholar 

  8. Mullins, O.C. (1998). Optical interrogation of aromatic moieties in crude oils and asphaltenes, Chapter 2 in O.C. Mullins and E.Y. Sheu (eds.), Structures and Dynamics of Asphaltenes. Plenum, New York.

    Google Scholar 

  9. Ruiz-Morales, Y. (2002). J. Phys. Chem. A 106, 11283; Ruiz-Morales, Y. (2006). Molecular Orbital Calculations and Optical Transitions of PAHs and Asphaltenes. Chapter 4 in this book.

    Article  CAS  Google Scholar 

  10. Koningsberger, D.C. and R. Prins (1988). X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES. John Wiley and Sons, New York.

    Google Scholar 

  11. Bergmann, et al. Submitted.

    Google Scholar 

  12. Stöhr, J. (1992). NEXAFS Spectroscopy. Springer-Verlag, Berlin, New York.

    Google Scholar 

  13. Francis, J.T., C. Enkvist, S. Lunell, and A.P. Hitchcock (1994). Can. J. Phys. 72, 879–884.

    CAS  Google Scholar 

  14. Sette, E, J. Stöhr, and A.P. Hitchcock (1984). J. Chem. Phys. 81, 4906–4914.

    Article  CAS  Google Scholar 

  15. Yannoulis, P., R. Dudde, K.H. Frank, and E.E. Koch (1987). Orientation of aromatic hydrocarbons on metal surfaces as determined by NEXAFS, 519–28.

    Google Scholar 

  16. Oji, H., R. Mitsumoto, E. Ito, H. Ishii, Y. Ouchi, K. Seki, T. Yokoyama, T. Ohta, and N. Kosugi (1998). J. Chem. Phys. 109, 10409–10418.

    Article  CAS  Google Scholar 

  17. Urquhart, S.G., A.P. Hitchcock, A.P. Smith, H.W. Ade, and E.G. Rightor (1997). J. Phys. Chem. B, 101, 2267–2276.

    Article  CAS  Google Scholar 

  18. Urquhart, S.G., A.P. Hitchcock, A.P. Smith, H.W. Ade, W. Lidy, E.G. Rightor, and G.E. Mitchell (1999). J. Electron Spectrosc. Relat. Phenom. 100, 119–135.

    Article  CAS  Google Scholar 

  19. Abbate, M., J.B. Goedkopp, F.M.F. de Groot, M. Grioni, J.C. Fuggle, and S. Hofmann et al. (1992). Surf. Interface Anal. 18, 65.

    Article  CAS  Google Scholar 

  20. Goulon, J., C. Goulon-Ginet, R. Cortes, and J.M. Dubois (1982). J. Phys. 43, 539.

    CAS  Google Scholar 

  21. deGroot, F.M.F, M.-A. Arrio, P. Sainctavit, C. Carrier, and C.T. Chen (1995). Physica B 208–209, 84.

    Article  Google Scholar 

  22. Smekal, A. (1923). Naturwissenschaften 11, 873.

    Article  CAS  Google Scholar 

  23. Suzuki, T. (1967). J. Phys. Soc. Jpn. 22(5), 1139.

    Article  CAS  Google Scholar 

  24. Mizuno, Y. and Y. Ohmura (1967). J. Phys. Soc. Jpn. 22(2), 445.

    Article  CAS  Google Scholar 

  25. Bergmann, U., P. Glatzel, and S.P. Cramer (2002). Micmchem. J. 71(2–3 SI), 221.

    Article  CAS  Google Scholar 

  26. Tohji, K. and Y. Udagawa (1987). Phys. Rev. B (Condensed Matter) 36(17), 9410; Schülke, W., U. Bonse, H. Nagasawa, A. Kaprolat, and A. Berthold (1988). Phys. Rev. B (Condensed Matter) 38(3), 2112; Schülke, W., A. Berthold, A. Kaprolat, and H.-J. Güntherodt (1988). Phys. Rev. Lett. 60(21), 2217.

    CAS  Google Scholar 

  27. Tohji, K. and Y. Udagawa (1989). Phys. Rev. B (Condensed Matter) 39(11), 7590.

    CAS  Google Scholar 

  28. Watanabe, N., H. Hayashi, Y. Udagawa, K. Takeshita, and H. Kawata (1996). Appl. Phys. Lett. 69(10), 1370; Udagawa, Y, N. Watanabe, and H. Hayashi (1997). J. Phys. Iv 7(C2 PT1), 347; Caliebe, W.A., J.A. Soininen, E.L. Shirley, C.C. Kao, and K. Hamalainen (2000). Phys. Rev. Lett. 84(17), 3907; Bowron, D.T., M.H. Krisch, A.C. Barnes, J.L. Finney, A. Kaprolat, and M. Lorenzen (2000). Phys. Rev. B 62(14), R9223; Soininen, J.A., K. Hamalainen, W.A. Caliebe, C.C. Kao, and E.L. Shirley (2001). J. Phys. (Condensed Matter) 13(35), 8039; Galambosi, S., J.A. Soininen, K. Hamalainen, E.L. Shirley, and C.C. Kao (2001). Phys. Rev. B 6402(2), art. no.-024102; Bergmann, U., P. Wernet, P. Glatzel, M. Cavalleri, L.G.M. Petterson, A. Nilsson et al. (2002). Phys. Rev. B 66, 092107; Wernet, P., D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara et al. (2004). Science 304(5673), 995.

    Article  CAS  Google Scholar 

  29. Krisch, M.H., F. Sette, C. Masciovecchio, and R. Verbeni (1997). Phys. Rev. Lett. 78(14), 2843; Hamalainen, K., S. Galambosi, J.A. Soininen, E.L. Shirley, J.P. Rueff, and A. Shukla (2002). Phys. Rev. B 65(15), 155111; Sternemann, C., M. Volmer, J.A. Soininen, H. Nagasawa, M. Paulus, H. Enkisch et al. (2003). Phys. Rev. B 68(3); Feng, Y, G.T. Seidler, J.O. Cross, A.T. Macrander, and J.J. Rehr (2004). Phys. Rev. B 69, 125402.

    Article  CAS  Google Scholar 

  30. Bergmann, U., O.C. Mullins, and S.P. Cramer (2000). Anal. Chem. 72(11), 2609.

    Article  CAS  Google Scholar 

  31. Bergmann, U., H. Groenzin, O.C. Mullins, P. Glatzel, J. Fetzer, and S.P. Cramer (2003). Chem. Phys. Lett. 369(1–2), 184.

    Article  CAS  Google Scholar 

  32. Caliebe, WA. (1997). PhD Thesis, Physics, University of Kiel, Germany.

    Google Scholar 

  33. Bergmann, U. and S.P. Cramer (1998). SPIE Int. Soc. Opt. Eng. San Diego Calif. 3448, 198.

    CAS  Google Scholar 

  34. Gordon, M.L., D. Tulumello, G. Cooper, A.P. Hitchcock, P. Glatzel, O.C. Mullins et al. (2003). J. Phys. Chem. A 107, 8512.

    Article  CAS  Google Scholar 

  35. Anders, S., J. Diaz, J.W. Ager, R.Y. Lo, and D.B. Bogy (1997). Appl. Phys. Lett. 71(23), 3367.

    Article  CAS  Google Scholar 

  36. Bergmann, U., H. Groenzin, O.C. Mullins, P. Glatzel, J. Fetzer, and S.P. Cramer (2004). Petroleum Sci. Technol. 22(7–8), 863.

    Article  CAS  Google Scholar 

  37. Buenrostro-Gonzalez, E., H. Groenzin, C. Lira-Galeana, and O.C. Mullins (2001). Energy & Fuels 15(4), 972.

    Article  CAS  Google Scholar 

  38. Clar, E. (1964). Polycyclic Hydrocarbons. Academic Press, New York; Clar, E. (1972). The Aromatic Sextet. John Wiley and Sons, New York.

    Google Scholar 

  39. George, G.N. and M.L. Gorbaty (1989). J. Am. Chem. Soc. 111, 3182.

    Article  CAS  Google Scholar 

  40. Waldo, G.S., O.C. Mullins, J.E. Penner-Hahn, and S.P. Cramer (1992). Fuel 71(1), 53.

    Article  CAS  Google Scholar 

  41. Mitra-Kirtley, S., O.C. Mullins, J. Van Elp, S.J. George, J. Chen, and S.P. Cramer (1993). J. Am. Chem. Soc. 115(1), 252.

    Article  CAS  Google Scholar 

  42. Mullins, O.C (1995). Chapter 2. In: Sheu, E.Y. and O.C. Mullins (eds.), Asphaltenes: Fundamentals and Applications, Plenum, New York.

    Google Scholar 

  43. Kosugi, N. (1987). Theor. Chim. Acta 72(2), 149; Kosugi, N. and H. Kuroda (1980) Chem. Phys. Lett. 74(3), 490.

    Article  CAS  Google Scholar 

  44. Kirtley, S.M., O.C. Mullins, J. van Elp, S. George, J. Chen, S.P. Cramer etal. (1992). Biochim. Biophys. Acta 0132(3), 249; Mitra-Kirtley, S., O.C. Mullins, J.F. Branthaver, and S.P. Cramer (1993). Energy Fuels 7(6), 1128; Mullins, O.C., S. Mitra-Kirtley, J. Vanelp, and S.P. Cramer (1993). Appl. Spectmsc. 47(8), 1268.

    Google Scholar 

  45. Bergmann, U. and R. Frahm (2001). TDR XFEL workshop series. In: Hastings, J. and Th. Tschentscher (eds.), Methods and Instrumentation for the XFEL, p. 52.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bergmann, U., Mullins, O.C. (2007). Carbon X-ray Raman Spectroscopy of PAHs and Asphaltenes. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_5

Download citation

Publish with us

Policies and ethics