Skip to main content

The Role of Asphaltenes in Stabilizing Water-in-Crude Oil Emulsions

  • Chapter
Asphaltenes, Heavy Oils, and Petroleomics

Abstract

Stable water-in-oil emulsions may form during the production of crude oil, as coproduced water is mixed with the oil from reservoir to separation facilities. Such emulsions introduce technical challenges, as they must be resolved to provide the specified product quality. Asphaltenes and resins indigenous to the oil are acknowledged as the most important components in respect to stabilization of the interface against coalescence. Fine solids may also contribute to the stabilization, as may the presence of naphthenic acids. The combination of these components creates a complex picture of several contributing mechanisms to the stability of water-in-oil emulsions. It is also established that the pressure conditions will influence the behavior of active components and the properties of the interface. In order to successfully mitigate the problems of stable emulsions, a thorough knowledge of component properties, behavior, interactions, and effect on water/oil interfacial properties must be developed for pressures ranging from ambient to high. This chapter seeks to bring to light recent findings related to these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sjöblom, J. (ed.). (1996). Emulsions and Emulsion Stability. Marcel Dekker, New York.

    Google Scholar 

  2. Sjöblom, J. (ed.). (2001). Encyclopedic Handbook of Emulsion Technology. Marcel Dekker, New York.

    Google Scholar 

  3. Sjöblom, J., N. Aske, I.H. Auflem, Ø. Brandal, T.E. Havre, Ø. Sæther, A. Westvik, E.E. Johnsen, and H. Kallevik (2003). Adv. Colloid Interface Sci. 100, 399–473.

    Article  CAS  Google Scholar 

  4. Aske, N., R. Orr, J. Sjöblom, H. Kallevik, and G. Oye (2004). Interfacial properties of watercrude oil systems using the oscillating pendant drop. Correlations to asphaltene solubility by near infrared spectroscopy. J. Dispersion Sci. Technol. 25(3), 263–275.

    Article  CAS  Google Scholar 

  5. McLean, J.D. and P.K. Kilpatrick (1997). J. Colloid Interface Sci. 189, 242.

    Article  CAS  Google Scholar 

  6. McLean, J.D. and P.K. Kilpatrick (1997). J. Colloid Interface Sci. 196, 23.

    Article  CAS  Google Scholar 

  7. Sjöblom, J., ø. Sæther, ø. Midttun, M.-H. Ese, O. Urdahl, and H. Førdedal (1998). In: E. Sheu and O.C. Mullins (eds.), Structures and Dynamics of Asphaltenes. Plenum Press, New York, Ch. 11.

    Google Scholar 

  8. Sjöblom, J., E.E. Johnsen, A. Westvik, et al. (2001). In: J. Sjöblom (ed.), Encyclopedic Handbook of Emulsion Technology. Marcel Dekker, New York, p. 595.

    Google Scholar 

  9. Friberg, S., L. Mandell, and M. Larsson (1969). J. Colloid Interface Sci. 29, 155.

    Article  CAS  Google Scholar 

  10. Friberg, S. (1971). J. Colloid Interface Sci. 37, 291.

    Article  CAS  Google Scholar 

  11. Friberg, S., P.O. Jansson, and E. Cederberg (1976). J. Colloid Interface Sci. 55, 614.

    Article  CAS  Google Scholar 

  12. Friberg, S. and C. Solans (1986). Langmuir 2, 121.

    Article  CAS  Google Scholar 

  13. Sjöblom, J., O. Urdahl, K.G.N. Børve, L. Mingyuan, J.O. Sæten, A.A. Christy, and T. Gu (1992). Adv. Colloid Interface Sci. 41, 241.

    Article  Google Scholar 

  14. Havre, T. and J. Sjöblom (2003). Combined D-phase and particle stabilization of water-in-crude oil emulsions, Colloid Surf. A 228, 131.

    Google Scholar 

  15. Speight, J.G. (1998). The Chemistry and Technology of Petroleum, 3rd edn., Marcel Dekker, Inc., New York.

    Google Scholar 

  16. Ali, M.A. and W.A. Nofal (1994). Application of high performance liquid chromatography for hydrocarbon group type analysis of crude oils. Fuel Sci. Technol. Int. 12(1), 21–33.

    CAS  Google Scholar 

  17. Fan, T.G. and J.S. Buckley (2002). Rapid and accurate SARA analysis of medium gravity crude oils. Energy Fuels 16(6), 1571–1575.

    Article  CAS  Google Scholar 

  18. Hammami. A., et al. (1998). Asphaltenic crude oil characterization:Anexperimental investigation of the effect of resins on the stability of asphaltenes. Pet. Sci. Technol. 16(3,4), 227–249.

    Article  CAS  Google Scholar 

  19. Radke, M., H. Willlsch, and D.H. Welte (1980). Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Anal. Chem. 52(3), 406–411.

    Article  CAS  Google Scholar 

  20. Suatoni, J.C. and R.E. Swab (1976). Preparative hydrocarbon compound type analysis by highperformance liquid chromatography. J. Chromatogr. Sci. 14(11), 535–537.

    CAS  Google Scholar 

  21. Hannisdal, A., P.V. Hemmingsen, and J. Sjöblom (2005). Group-type analysis of heavy crude oils using vibrational spectroscopy in combination with multivariate analysis. Ind. Eng. Chem. Res. 44(5), 1349–1357.

    Article  CAS  Google Scholar 

  22. Snyder, L.R., J.J. Kirkland, and J.L. Glajch (1988). Practical HPLC Method Development, 2nd edn. John Wiley and Sons, Inc., New York, vol xvi, p. 260.

    Google Scholar 

  23. Sheu, E.Y., and O.C. Mullins (1995). Asphaltenes: Fundamentals and Applications. Plenum Press, New York.

    Google Scholar 

  24. Andersen, S.I. and J.G. Speight (2001). Pet. Sci. Technol. a19, 1.

    Google Scholar 

  25. Dabir, B., M. Nematy, A.R. Mehrabi, H. Rassamdana, and M. Sahimi (1996). Fuel 75, 1633.

    Article  CAS  Google Scholar 

  26. Peramanu, S., B.B. Pruden, and P. Rahimi (1999). Ind. Eng. Chem. Res. 38, 3121.

    Article  CAS  Google Scholar 

  27. Groenzin, H. and O.C. Mullins (2000). Energy Fuels 14, 677.

    Article  CAS  Google Scholar 

  28. Rogel, E., O. Leon, G. Torres, and J. Espidel (2000). Fuel 79, 1389.

    Article  CAS  Google Scholar 

  29. Loh, W., R.S. Mohamed, and A.C.S. Ramos (1999). Pet. Sci. Technol. 17, 147.

    Article  CAS  Google Scholar 

  30. Leon, O., E. Rogel, J. Espidel, and G. Torres (2000). Energy Fuels 14, 6.

    Article  CAS  Google Scholar 

  31. Andersen, S.I. and K.S. Birdi (1991). J. Colloid Interface Sci. 142, 497.

    Article  CAS  Google Scholar 

  32. Andersen, S.I. and E.H. Stenby (1996). Fuel Sci. Technol. Intl. 14, 261.

    CAS  Google Scholar 

  33. Park, S.J. and G.A. Mansoori (1988). Energy Sources, 10, 109.

    Article  CAS  Google Scholar 

  34. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodetskii, et al. (1998). J. Pet. Sci. Eng. 20, 297.

    Article  CAS  Google Scholar 

  35. Anisimov, M.A., I.K. Yudin, V. Nikitin, et al. (1995). J. Phys. Chem. 99, 9576.

    Article  CAS  Google Scholar 

  36. Castillo, J., A. Fernandez, M.A. Ranaudo, and S. Acevedo (2001). Pet. Sci. Eng. 19, 75.

    CAS  Google Scholar 

  37. Leontaritis, K.J. and G.A. Mansoori (1987). In: SPE International Symposium on Oilfield Chemistry, Richardson, TX.

    Google Scholar 

  38. Leontaritis, K.J. (1989). In: SPE Production Operations Symposium, Oklahoma City, OK.

    Google Scholar 

  39. Mansoori, G.A. (1997). J. Pet. Sci. Eng. 17, 101.

    Article  CAS  Google Scholar 

  40. Nellensteyn, F.J. (1939). Chem. Weekblad 36, 362.

    CAS  Google Scholar 

  41. Swanson, J. (1942). J. Phys. Chem. 46, 141.

    Article  CAS  Google Scholar 

  42. Pfeiffer, J.P. and R.N. Saal (1940). Phys. Chem. 44, 139.

    Article  CAS  Google Scholar 

  43. Hirschberg, A., L.N.J. DeJong, B.A. Schipper, and J.G. Meijer (1984). Influence of Temperature and Pressure on Asphaltene Flocculation. Soc. Pet. Eng. J. 24(3), 283–293.

    CAS  Google Scholar 

  44. Andersen, S.I. and J.G. Speight (1999). J. Pet. Sci. Eng. 22, 53.

    Article  CAS  Google Scholar 

  45. Joshi, N.B., O.C. Mullins, A. Jamaluddin, J. Creek, and J. McFadden (2001). Energy Fuels 15, 979.

    Article  CAS  Google Scholar 

  46. Hammami, A., C.H. Phelps, T. Monger-McClure, and T.M. Little (2000). Energy Fuels 14, 14.

    Article  CAS  Google Scholar 

  47. Peramanu, S., C. Singh, M. Agrawala, and H.W. Yarranton (2001). Energy Fuels 15, 910.

    Article  CAS  Google Scholar 

  48. Spiecker, P.M. and P.K. Kilpatrick (2002). In: 3rd International Conference on Petroleum Phase Behavior & Fouling, New Orleans, LA.

    Google Scholar 

  49. Blanco, M., S. Maspoch, I. Villarroya, X. Peralta, J.M. Gonzalez, and J. Torres (2001). Anal. Chim. Acta, 434, 133.

    Article  CAS  Google Scholar 

  50. McClure, W.F. (1994). Anal. Chem. A 66, 43.

    Article  Google Scholar 

  51. Mullins, O.C. (1990). Anal. Chem. 62, 508.

    Article  CAS  Google Scholar 

  52. Gossen, P.D., J.F. MacGregor, and R.H. Pelton (1993). Appl. Spectrosc. 47, 1852.

    Article  CAS  Google Scholar 

  53. Frake, P., I. Gill, C.N. Luscombe, D.R. Rudd, J. Waterhousea, and U.A. Jayasorriya (1998). Analyst 123, 2043.

    Article  CAS  Google Scholar 

  54. Pasikatan, M.C., J.L. Steele, C.K. Spillman, and E. Haque (2001). J. Near Infrared Spectrosc. 9, 153.

    CAS  Google Scholar 

  55. Santos, A.F., E.L. Lima, and J.C. Pinto (1998). J. Appl. Polym. Sci. 70, 1737.

    Article  CAS  Google Scholar 

  56. Parisi, A.F., L. Nogueiras, and H. Prieto (1990). Anal. Chim. Acta 238, 95.

    Article  CAS  Google Scholar 

  57. Kelly, J.J. and J.B. Callis (1990). Nondestructive analytical procedure for simultaneous estimation of the major classes of hydrocarbon constituents of finished gasolines. Am. Chem. Soci. 62(14), 1444–1451.

    CAS  Google Scholar 

  58. Hidajat, K. and S.M. Chong (2000). J. Near Infrared Spectrosc. 8, 53.

    CAS  Google Scholar 

  59. Chung, H. and M.-S. Ku (2000). Appl. Spectrosc. 54, 239.

    Article  CAS  Google Scholar 

  60. Ku, M.-S. and H. Chung (1999). Appl. Spectrosc. 53, 557.

    Article  CAS  Google Scholar 

  61. Kim, M., Y.-H. Lee, and C. Han (2000). Comput. Chem. Eng. 24, 513.

    Article  CAS  Google Scholar 

  62. Aske, N., H. Kallevik, E.E. Johnsen, and J. Sjöblom (2002). Asphaltene aggregation from crude oils and model systems studied by high pressure NIR spectroscopy. Energy Fuels 16(5), 1287–1295.

    Article  CAS  Google Scholar 

  63. Chang, C.-L. and S.H. Fogler (1994). Langmuir 10, 1758.

    Article  CAS  Google Scholar 

  64. Chang, C.-L. and S.H. Fogler (1994). Langmuir 10, 1749.

    Article  CAS  Google Scholar 

  65. Auflem, I.H., T.E. Havre, and J. Sjöblom (2002). Near infrared study on the dispersive effects of amphiphiles and naphthenic acids on asphaltenes in model heptane-toluene mixtures. Colloid Polym. Sci. 280, 695–700.

    Article  CAS  Google Scholar 

  66. Ostlund, J.-A., M. Nyden, I.H. Auflem, and J. Sjöblom (2003). Interactions between asphaltenes and naphthenic acids. Energy Fuel 17(1), 113–119.

    Article  CAS  Google Scholar 

  67. Ostlund, J.-A., S.-I. Andersson, and M. Nyden (2001). Fuel 80, 1529.

    Article  CAS  Google Scholar 

  68. Ekholm, P., E. Blomberg, P. Claesson, I.H. Auflem, J. Sjöblom, and A. Kornfeldt (2002). J. Colloid Interface Sci. 247, 342.

    Article  CAS  Google Scholar 

  69. Lucassen-Reynders, E.H. (1996). In: P. Becher (ed.), Encyclopedia of Emulsion Technology, Vol. 4. Marcel Dekker, New York, p. 63.

    Google Scholar 

  70. Lucassen-Reynders, E.H. (1993). Food Struct. 12, 1.

    CAS  Google Scholar 

  71. Benjamins, J., A. Cagna, and E.H. Lucassen-Reynders (1996). Colloids Surf. 114, 245.

    Article  CAS  Google Scholar 

  72. Kilpatrick, P.K. and P.M. Spiecker (2001). In: J. Sjöblom (ed.), Encyclopedic Handbook of Emulsion Technology. Marcel Dekker, New York, p. 707.

    Google Scholar 

  73. Goldszal, A., C. Hurtevent, and G. Rousseau (2002). Scale and naphthenate inhibition in deepoffshore fields. In: SPE Oilfield Scale Symposium, Aberdeen, UK.

    Google Scholar 

  74. Rousseau, G., H. Zhou, and C. Hurtevent (2001). Calcium carbonate and naphthenate mixed scale in deep offshore fields. In: SPE Oilfield Scale Symposium, Aberdeen, UK.

    Google Scholar 

  75. Hsu, C.S., G.J. Dechert, W.K. Robbins, and E.K. Fukuda (2000). Energy Fuels 14, 217.

    Article  CAS  Google Scholar 

  76. Rudin, J. and D.T. Wasan (1992). Colloids Surf. 68, 67.

    Article  CAS  Google Scholar 

  77. Rudin, J. and D.T. Wasan (1992). Colloids Surf. 68, 81.

    Article  CAS  Google Scholar 

  78. Sjöblom, J., E.E. Johnsen, A. Westvik, L. Bergflødt, I.H. Auflem, T.E. Havre, and H. Kallevik (2000). Colloid chemistry in sub sea petroleum and gas processing. In: Second International Conference on Petroleum and Gas Phase Behaviour and Fouling, Copenhagen, Denmark.

    Google Scholar 

  79. Slavcheva, E., B. Shone, and A. Turnbull (1999). Br. Corros. J. 34(2), 125.

    Article  CAS  Google Scholar 

  80. Marquez, M.L.H. (1999). Interfacial activity of native acids in heavy crude oil. In: AICHE Spring National Meeting Session T6005, Houston, TX.

    Google Scholar 

  81. Acevedo, S., G. Escobar, M.A. Ranaudo, et al. (1999). Energy Fuels 13(2), 333.

    Article  CAS  Google Scholar 

  82. Pathak, A.K. and T. Kumar (1995). Study of indigenous crude oil emulsions and their stability. In: Proceedings of PETROTECH-95, Technology Trends in Oil Industry, New Delhi.

    Google Scholar 

  83. Skurtveit, R., J. Sjöblom, and H. Høiland (1989). J. Colloid Interface Sci. 133(2), 395.

    Article  CAS  Google Scholar 

  84. Sjöblom, J., R. Lindberg, and S.E. Friberg (1996). Adv. Colloid Interface Sci. 95, 125.

    Article  Google Scholar 

  85. Gillberg, G., H. Lehtinen, and S.E. Friberg (1970). J. Colloid Interface Sci. 33(1), 40.

    Article  CAS  Google Scholar 

  86. Friberg, S.E., L. Mandell, and P. Ekwall (1969). Kolloid-Z. Z. Polym. 233(1,2), 955.

    Article  CAS  Google Scholar 

  87. Lindman, B. and H. Wennerstroem (1980). Top. Curr. Chem. 87, 1.

    Article  CAS  Google Scholar 

  88. Wennerstrom, H. and B. Lindman (1979). Phys. Rev. 52, 1.

    Google Scholar 

  89. Ekwall, P., I. Danielsson, and P. Stenius (1972). In: M. Kenken (ed.), MTP Rev. Sci. Phys. Chem. Ser. 1, Vol. 7. Butterworths, London, p. 97.

    Google Scholar 

  90. Ekwall, P. (1975). In: G.H. Brown (ed.), Advances in Liquid Crystals, Vol. 1. Academic Press, New York, p. 1.

    Google Scholar 

  91. Ekwall, P., L. Mandell, and K. Fontell (1969). Mol. Cryst. Liq. Cryst. 8, 157.

    Article  CAS  Google Scholar 

  92. Brient, J.A., P.J. Wessner, and M.N. Doyle (1995). In: K. Othmer (ed.), Encyclopedia of Chemical Technology, John Wiley & Sons, New York. p. 1017.

    Google Scholar 

  93. Meredith, W., S.-J. Kelland, and D.M. Jones (2000). Org. Geochem. 31(11), 1059.

    Article  CAS  Google Scholar 

  94. Fan, T.-P. (1991). Energy Fuels 5(3), 371.

    Article  CAS  Google Scholar 

  95. Koike, L., L.M.C. Reboucas, F.D.A. Reis, A.J. Marsaioli, H.H. Ichnow, and W. Michaelis (1992). Org. Geochem. 18(6), 851.

    Article  CAS  Google Scholar 

  96. Tomczyk, N.A., R.E. Winans, J.H. Shinn, and R.C. Robinson (2001). Energy Fuels 15(6), 1498.

    Article  CAS  Google Scholar 

  97. Qian, K., W.K. Robbins, C.A. Hughey, H.J. Cooper, R.P. Rodgers, and A.G. Marshall (2001). Energy Fuels 15(6), 1505.

    Article  CAS  Google Scholar 

  98. Robbins, W.K. (1998). Prepr-Am. Chem. Soc. Div. Pet. Chem. 43(1), 137.

    CAS  Google Scholar 

  99. Brient, J.A. (1998). Prepr. Am. Chem. Soc. Div. Pet. Chem. 43(1), 131.

    CAS  Google Scholar 

  100. Horvath-Szabo, G., J. Czarnecki, and J. Masliyah (2001). J. Colloid Interface Sci. 236, 233.

    Article  CAS  Google Scholar 

  101. Horvath-Szabo, G., J. Masliyah, and J. Czarnecki (2001). J. Colloid Interface Sci. 242, 247.

    Article  CAS  Google Scholar 

  102. Strassner, J.E. (1968). J. Pet. Technol. 20(3), 303.

    CAS  Google Scholar 

  103. Eley, D.D., M.J. Hey, and M.A. Lee (1987). Colloids Surf. 24, 173.

    Article  CAS  Google Scholar 

  104. Mohammed, R.A., A.I. Bailey, P.F. Luckham, and S.E. Taylor (1993). Colloids Surf. 80, 223.

    Article  CAS  Google Scholar 

  105. Mohammed, R.A., A.I. Bailey, P.F. Luckham, and S.E. Taylor (1993). Colloids Surf 80 237

    Article  CAS  Google Scholar 

  106. Førdedal, H., E. Nodland, J. Sjöblom, and O.M. Kvalheim (1995). J. Colloid Interface Sci. 173, 396.

    Article  Google Scholar 

  107. Førdedal, H., Y. Schildberg, J. Sjöblom, and J.-L. Volle (1996). Colloids Surf. 106, 33.

    Article  Google Scholar 

  108. Førdedal, H., Ø. Midttun, J. Sjöblom, O.M. Kvalheim, Y. Schildberg, and J.-L. Volle (1996). J. Colloid Interface Sci. 182, 117.

    Article  Google Scholar 

  109. Djuve, J., X. Yang, U. Fjellanger, J. Sjöblom, and E. Pelizzetti (2001). Colloid Polym. Sci. 279, 232.

    Article  CAS  Google Scholar 

  110. Chen, T.Y, R.A. Mohammed, A.I. Bailey, P.F. Luckham, and S.E. Taylor (1994). Colloids Surf. 83, 273.

    Article  CAS  Google Scholar 

  111. Førdedal, H. (1995). WyO emulsions in high electric fields as studied by means of time domain dielectric spectroscopy. Ph.D. thesis, University of Bergen, Norway.

    Google Scholar 

  112. Aske, N., H. Kallevik, and J. Sjöblom (2002). Water-in-crude oil emulsion stability studied by critical electric field measurements. Correlation to physico-chemical parameters and near-infrared spectroscopy. J. Pet. Sci. Eng. 36(1–2), 1–17.

    Article  CAS  Google Scholar 

  113. Kallevik, H., O.M. Kvalheim, and J. Sjöblom (2000). J. Colloid Interface Sci. 225, 494.

    Article  CAS  Google Scholar 

  114. Wise, B.M. and N.B. Gallagher (1996). J. Proc. Cont. 6, 329.

    Article  CAS  Google Scholar 

  115. Martens, H., and M. Martens (2001). Multivariate Analysis of Quality. An Introduction. John Wiley & Sons, Chichester.

    Google Scholar 

  116. Aske, N., H. Kallevik, and J. Sjöblom (2001). Energy Fuels 15, 1304.

    Article  CAS  Google Scholar 

  117. Auflem, I.H., H. Kallevik, A. Westvik, and J. Sjöblom (2001). J. Pet. Sci. Eng. 31(1), 1.

    Article  CAS  Google Scholar 

  118. Hinze, J.O. (1955). AIChE J. 1(3), 289.

    Article  CAS  Google Scholar 

  119. Karabelas, A.J. (1978). AIChE J. 24(2), 170.

    Article  CAS  Google Scholar 

  120. Davies, J.T. (1985). Chem. Eng. Sci. 40(5), 839.

    Article  CAS  Google Scholar 

  121. Sleicher, C.A.J. (1962). AIChE J. 8(4), 471.

    Article  Google Scholar 

  122. Meijs, F.H. and R.W. Mitchell (1974). J. Pet. Technol. May, 563.

    Google Scholar 

  123. Eiken, M.B. (1999). M.Sc. thesis, Norwegian University of Science and Technology, Trondheim.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sjöblom, J., Hemmingsen, P.V., Kallevik, H. (2007). The Role of Asphaltenes in Stabilizing Water-in-Crude Oil Emulsions. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_21

Download citation

Publish with us

Policies and ethics