Skip to main content

Biotechnology in Space

  • Chapter
Fundamentals of Space Biology

Part of the book series: THE SPACE TECHNOLOGY LIBRARY ((SPTL,volume 18))

  • 1410 Accesses

Abstract

Often praised as the most promising field for the commercial exploitation of space, this domain today has two primary fundamental aspects: the use of microgravity as a tool for separation processes and techniques (including protein crystals growth), and the production of cells for medically valuable proteins like immuno-reactive molecules, hormones, enzymes, and vaccines. Results of space experiments and their terrestrial applications are presented, and their advantages and disadvantages compared to Earth-based techniques, such as genetic engineering, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binot R (1998) The International Space Station. Microgravity: A Tool for Industrial Research. European Space Agency (ed) Noordwijk, ESA BR-136, pp 16–17

    Google Scholar 

  • Chayen NE, Helliwell JR (1999) Space-grown crystals may prove their worth. Nature 398: 20

    Article  Google Scholar 

  • Cogoli A, Cogoli-Greuter M (1997) Activation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 6: 33–79

    Article  Google Scholar 

  • Day J, McPherson A (1992) Macromolecular crystal growth experiments on International Microgravity Laboratory. Protein Sci 1: 1254–1268

    Google Scholar 

  • DeLucas L, Smith CD, Smith HS, Vijay-Kumar S, Senadhi SE, Ealick SE, Carter D, McPherson A (1989) Protein crystal growth in microgravity. Science 246: 651–654

    Article  Google Scholar 

  • Dickson KJ (1991) Summary of biological spaceflight experiments with cells, ASGSB Bull 4: 151–260

    Google Scholar 

  • Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 94: 13885–13890

    Article  Google Scholar 

  • Geierstanger BH, Mrksich M, Dervan PB, Wemmer DE (1996) Extending the recognition site of designed minor groove binding molecules. Nature Structural Biology 3: 321–324

    Article  Google Scholar 

  • Hammond TG, Lewis FC, Goodwin TJ, Linnehan RM, Wolf DA, Hire KP, Campbell WC, Benes E, O'Reilly KC, Globus RK, Kaysen JH (1999) Gene expression in space. Nature Medicine 5: 359

    Article  Google Scholar 

  • Kaysen JH, Campbell WC, Majewski RR, Goda FU, Navar GL, Lewis FC, Goodwin TJ, Hammond TG (1999) Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J Membr Biol 168: 77–89

    Article  Google Scholar 

  • Koszelak S, Day J, Leja C, Cudney R, McPherson A (1995) Protein and virus crystal growth on international microgravity laboratory. Biophys J 69: 13–19

    Google Scholar 

  • Lewis ML., Hughes-Fulford M (1997) Cellular responses to spaceflight. In: Fundamentals of Space Life Sciences, Vol 1, SE Churchill (ed) Krieger Publishing Company, Malabar, pp 21–39

    Google Scholar 

  • MacKinnon R (2004) Nobel Lecture. Potassium channels and the atomic basis of selective ion conduction. Biosci Rep 24: 75–100

    Article  Google Scholar 

  • Moore D, Cogoli A (1996) Gravitational and space biology at the cellular level. In: Biological and Medical Research in Space. D Moore, P Bie, H Oser (eds) Springer, New York, pp 1–106

    Google Scholar 

  • National Research Council (1998) A Strategy for Research in Space Biology and Medicine in the New Century. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2000) Future Biotechnology Research on the International Space Station. National Academy Press, Washington DC. Accessed 25 October 2005 at :http://www.nap.edu/books/0309069750/html

    Google Scholar 

  • Richardson J (1997) The International Space Station Commercialization (ISSC) Study. Potomac Institute for Policy Studies, Arlington, VA. Accessed 31 October 2005 at :http://www.panix.com/kingdon/space/potomac97.pdf

    Google Scholar 

  • Smith GD, Ciszak E, Pangborn W (1996) A novel complex of a phenolic derivative with insulin: Structural features related to the T→R transition. Protein Sci 5: 1502–1511

    Article  Google Scholar 

  • Snell EH, Weisgerber S, Helliwell JR, Weckert E, Holzer K, Schroer K (1995) Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Crystallogr D 51: 1099–1102

    Article  Google Scholar 

  • Unsworth BR, Lelkes PI (1998) Growing tissues in microgravity. Nature Medicine 4: 901–907

    Article  Google Scholar 

  • Volkman BF, Nohaile MJ, Amy NK, Kustu S, Wemmer DE (1995) Threedimensional solution structure of the N-terminal receiver domain of NtrC. Biochemistry 34: 1413–1424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Clément, G., Bukley, A. (2006). Biotechnology in Space. In: Clément, G., Slenzka, K. (eds) Fundamentals of Space Biology. THE SPACE TECHNOLOGY LIBRARY, vol 18. Springer, New York, NY. https://doi.org/10.1007/0-387-37940-1_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-37940-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33113-3

  • Online ISBN: 978-0-387-37940-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics