Skip to main content

Excess Carrier Phenomenon in Semiconductors

  • Chapter
Semiconductor Physical Electronics

Abstract

The generation of excess carriers in a semiconductor may be accomplished by either electrical or optical means. For example, electron–hole pairs are created in a semiconductor when photons with energies exceeding the band gap energy of the semiconductor are absorbed. Similarly, minority carrier injection can be achieved by applying a forward bias voltage across a p-n junction diode or a bipolar junction transistor. The inverse process to the generation of excess carriers in a semiconductor is that of recombination. The annihilation of excess carriers generated by optical or electrical means in a semiconductor may take place via different recombination mechanisms. Depending on the ways in which the energy of an excess carrier is removed during a recombination process, there are three basic recombination mechanisms that are responsible for carrier annihilation in a semiconductor. They are (1) nonradiative recombination (i.e., the multiphonon process), (2) band-to-band radiative recombination, and (3) Auger band-to-band recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952).

    Article  MATH  ADS  Google Scholar 

  2. R. N. Hall, Phys. Rev. 87, 387 (1952).

    Article  ADS  Google Scholar 

  3. C. T. Sah and W. Shockley, Phys. Rev. 109, 1103 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. T. Landsberg and A. F. W. Willoughby (eds.), Solid State Electron. 21, 1273 (1978).

    Google Scholar 

  5. M. E. Law, E. Solley, M. Liang, and D. E. Burk, IEEE Elec. Dev. Lett. 12, 40 (1991).

    Article  Google Scholar 

  6. S. S. Li, W. L. Wang, P. W. Lai, and R. Y. Loo, IEEE Trans. Electron Devices, ED-27, 857 (1980).

    Article  ADS  Google Scholar 

  7. S. S. Li, W. L. Wang, and E. H. Shaban, Solid State Commun. 51, 595 (1984).

    Article  Google Scholar 

  8. S. S. Li, Appl. Phys. Lett. 29, 126 (1976).

    Article  ADS  Google Scholar 

  9. R. N. Hall, Proc. IEEE 106B, 923 (1959).

    Google Scholar 

  10. D. V. Lang, J. Appl. Phys. 45, 3014–3022 (1974).

    Article  ADS  Google Scholar 

  11. Bibliography

    Google Scholar 

  12. J. S. Blakemore, Semiconductor Statistics, Pergamon Press, New York (1962).

    MATH  Google Scholar 

  13. R. H. Bube, Photoconductivity of Solids, Wiley, New York (1960).

    MATH  Google Scholar 

  14. P. T. Landsberg, Solid State Physics in Electronics and Telecommunications, Academic Press, London (1960).

    Google Scholar 

  15. A. Many and R. Bray, in: Progress in Semiconductors, Vol. 3, Heywood and Co., London (1958), pp. 117–151.

    Google Scholar 

  16. J. P. McKelvey, Solid State and Semiconductor Physics, 2nd ed., Chapter 10, Harper & Row, New York (1982).

    Google Scholar 

  17. D. A. Neamen, Semiconductor Physics and Devices, 3rd ed., McGraw-Hill, New York (2003).

    Google Scholar 

  18. R. F. Pierret, Advanced Semiconductor Fundamentals, 2nd ed., Prentice Hall, Englewood Cliffs, NJ (2003).

    Google Scholar 

  19. W. Shockley, Electrons and Holes in Semiconductors, D. Van Nostrand, New York (1950).

    Google Scholar 

  20. R. A. Smith, Semiconductors, Cambridge University Press, London (1961).

    Google Scholar 

  21. M. Shur, Physics of Semiconductor Devices, Prentice Hall, New York (1990).

    Google Scholar 

  22. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. Wiley, New York (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Li, S.S. (2006). Excess Carrier Phenomenon in Semiconductors. In: Li, S.S. (eds) Semiconductor Physical Electronics. Springer, New York, NY. https://doi.org/10.1007/0-387-37766-2_6

Download citation

Publish with us

Policies and ethics