Skip to main content

Abstract

Nuclear quadrupole resonance (NQR) uses radio-frequency (RF) magnetic fields to induce and detect transitions between sublevels of a nuclear ground state, a description that also applies to nuclear magnetic resonance (NMR). NMR refers to the situation where the sublevel energy splitting is predominantly due to a nuclear interaction with an applied static magnetic field, while NQR refers to the case where the predominant splitting is due to an interaction with electric field gradients within the material. So-called “pure NQR” refers to the common case when there is no static magnetic field at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pound, R.V. (1950) Phys. Rev. 79, 685–702.

    Article  ADS  Google Scholar 

  2. Dehmelt, H.G. & Kruger, H. (1950) Naturwiss. 37, 111–112.

    Article  ADS  Google Scholar 

  3. Das, T.P. & Hahn, E.L. (1958) Nuclear Quadrupole Resonance Spectroscopy, Supplement 1 of Solid State Physics, Seitz F. & Turnbull D. (eds) (New York, Academic).

    Chapter  Google Scholar 

  4. Ohte, A., Iwaoka, H., Mitsui, K., Sakurai, H. & Inaba, A. (1979) Metrologia 15, 195–199.

    Article  ADS  Google Scholar 

  5. Huebner, M., Leib, J. & Eska, G. (1999) J. Low Temp. Phys. 114, 203–230.

    Article  Google Scholar 

  6. Garroway, A.N., Buess, M.L., Miller, J.B., Suits, B.H., Hibbs, A.D., Barrall, G.A., Matthews, R. & Burnett, L.J. (2001) IEEE Trans. Geosci. Remote Sens. 39, 1108–1118.

    Article  ADS  Google Scholar 

  7. Segel, S.L. (1978) J. Chem. Phys. 69, 2434–2438.

    Article  ADS  Google Scholar 

  8. Thyssen, J., Schwerdtfeger, P., Bender, M., Nazarewicz, W. & Semmes, P.B. (2001) Phys. Rev. A 63, 022505:1–11.

    Google Scholar 

  9. Gerginov, V., Derevianko, A. & Tanner, C.E. (2003) Phys. Rev. Lett. 91, 072501:1–4.

    Google Scholar 

  10. Slichter, C.P. (1990) Principles of Magnetic Resonance, 3rd Ed., (Heidelberg, Springer-Verlag)

    Google Scholar 

  11. Bain, A.D. & Khasawneh, M. (2004) Concepts Magn. Reson. 22A, 69–78.

    Article  Google Scholar 

  12. Butler, L.G. & Brown, T.L. (1981) J. Magn. Reson. 42, 120–131.

    Google Scholar 

  13. Hiyama, Y., Butler, L.G. & Brown, T.L. (1985) J. Magn. Reson. 65, 472–480

    Google Scholar 

  14. Cohen, M.H. (1954) Phys. Rev. 96, 1278–1284.

    Article  ADS  Google Scholar 

  15. Bersohn, R. (1952) J. Chem. Phys. 20, 1505–1509.

    Article  ADS  Google Scholar 

  16. Wang, T-C. (1955) Phys. Rev. 99, 566–577.

    Article  ADS  Google Scholar 

  17. Suits, B.H. & Slichter, C.P. (1984) Phys. Rev. 29, 41–51.

    Article  ADS  Google Scholar 

  18. Sundfors, R.K., Bolef, D.I. & Fedders, P.A. (1983) Hyperfine Interactions 14, 271–313.

    Article  ADS  Google Scholar 

  19. Lee, Y.K. (2002) Concepts Mag. Reson. 14, 155–171.

    Article  Google Scholar 

  20. Vega, S. (1978) J. Chem. Phys. 68, 5518–5527.

    Article  ADS  Google Scholar 

  21. Sauer, K.L., Suits, B.H., Garroway, A.N. & Miller, J.B. (2001) Chem. Phys. Lett. 342, 362–368; (2003) J. Chem. Phys. 118, 5071–5081.

    Google Scholar 

  22. Raich, J.C. & Good Jr. R.H. (1963) Am. J. Physics 31, 356–362.

    Article  MATH  ADS  Google Scholar 

  23. Bloom, M., Hahn, E.L. & Herzog B. (1955) Phys. Rev. 97, 1699–1709.

    Article  ADS  Google Scholar 

  24. Muha, G.M. (1980) JChemPhys 73, 4139–4140; (1982) J. Magn. Reson. 49 431–443.

    ADS  Google Scholar 

  25. Brooker, H.R. & Creel, R.B. (1974) J. Chem. Phys. 61, 3658–3664.

    Article  ADS  Google Scholar 

  26. Bloom, M. (1954) Phys. Rev. 94, 1396–1397.

    Article  ADS  Google Scholar 

  27. Creel, R.B., von Meerwall, E.D. & Brooker, H.R. (1975) J. Magn. Reson. 20, 328–333.

    Google Scholar 

  28. Sunitha, Bai N., Reddy, N. & Ramachandran, R. (1993) J. Magn. Reson. A 102, 137–143.

    Article  Google Scholar 

  29. Chen, M.C. & Slichter, C.P. (1983) Phys. Rev. B 27, 278–292.

    Article  ADS  Google Scholar 

  30. Korringa, J. (1950) Physica 16, 601–610.

    Article  MATH  ADS  Google Scholar 

  31. For Example see Martindale, J.A., Barrett, S.E., Durand, D.J., O'Hara, K.E., Slichter, C.P., Lee, W.C. & Ginsberg, D.M. (1994) Phys. Rev. B 50, 13645–13652.

    Article  ADS  Google Scholar 

  32. Matsamura, M., Saskawa, T., Takabatake, T., Tsuji, S., Tou, H. & Sera, M. (2003) J. Phys. Soc. Japan 72, 1030–1033.

    Article  ADS  Google Scholar 

  33. Bayer, H. (1951) Z. Physik 130, 227–238.

    Article  ADS  Google Scholar 

  34. Kushida, T., Benedek, G.B. & Bloembergen, N. (1956) Phys. Rev. 104, 1364–1377.

    Article  ADS  Google Scholar 

  35. Schempp, E. & Silva, P.R.P. (1973) Phys. Rev. B 7 2983–2986; (1973) J. Chem. Phys. 58, 5116–5119.

    Google Scholar 

  36. Alexander, S. & Tzalmona, A. (1965) Phys. Rev. 138, A845–A855.

    Article  ADS  Google Scholar 

  37. van Vleck, J.H. (1948) Phys. Rev. 74, 1168–1183.

    Article  MATH  ADS  Google Scholar 

  38. Abgragam, A. & Kambe, K. (1953) Phys. Rev. 91, 894–897.

    Article  ADS  Google Scholar 

  39. Nagel, O.A., Ramia, M.E. & Martin, C.A. (1996) Appl. Magn. Reson. 11, 557–566.

    Article  Google Scholar 

  40. Vega, S. (1973) Advances in Magn. Reson. 6, 259–302.

    Google Scholar 

  41. Suits, B.H. (1994) in Trigg G. L. (ed.) Encyclopedia of Applied Physics, Vol. 9, 71–93 (VCH Publishers).

    Google Scholar 

  42. Roberts, A. (1947) Rev. Sci. Instrum. 18, 845–848.

    Article  ADS  Google Scholar 

  43. Pound, R.V. & Knight, W.D. (1950) Rev. Sci. Instrum. 21, 219–225.

    Article  ADS  Google Scholar 

  44. Robinson, F.N.H. (1959) J. Sci. Instrum. 36, 481–487.

    Article  ADS  Google Scholar 

  45. Kim, S.S., Mysoor, N.R., Carnes, S.R., Ulmer, C.T. Halbach, K. (1997) In Proceedings of the 16th Digital Avionics Systems Conference (DASC), Irvine, CA, (IEEE, New Jersey), pp. 2.2–14.2.2–23.

    Google Scholar 

  46. Hill, H.D.W. & Richards, R.E. (1968) J. Phys. E: Sci. Inst. Series 2, 1, 977–983.

    Article  ADS  Google Scholar 

  47. Hoult, D.I. & Richards, R.E. (1976) J. Magn. Reson. 24, 71–85.

    Google Scholar 

  48. Hoult, D.I. (1973) Prog. NMR Spec. 12, 41–77.

    Article  Google Scholar 

  49. Pound, R.V. & Knight, W.D. (1950) Rev. Sci. Instrum. 21, 219–225.

    Article  ADS  Google Scholar 

  50. Pound, R.V. (1952) Prog. Nucl. Phys. 2, 21–50.

    Google Scholar 

  51. Viswanathan, T.L., Viswanathan, T.R. & Sane, K.V. (1968) Rev. Sci. Instrum. 39, 472–475; (1970) Rev. Sci. Instrum. 41, 477–478

    Article  ADS  Google Scholar 

  52. Zikumaru, Y. (1990) Z. Naturforsch. 45a, 591–594.

    Google Scholar 

  53. Sullivan, N. (1971) Rev. Sci. Instrum. 42, 462–465.

    Article  ADS  Google Scholar 

  54. Offen, R.J. & Thomson, N.R. (1969) Phys. Educ. 4, 264–267.

    Article  ADS  Google Scholar 

  55. Robinson, FNH. (1982) J. Phys. E: Sci. Instrum. 15, 814–823.

    Article  ADS  Google Scholar 

  56. Insam, E. (2002) Electronics World 108(1792) 46–53.

    Google Scholar 

  57. Lowe, I.J. & Tarr, C.E. (1968) J. Phys. E: Sci. Instrum. 1, 320–322.

    Article  ADS  Google Scholar 

  58. McLachlan, L.A. (1980) J. Magn. Reson. 39, 11–15.

    Google Scholar 

  59. Bloom, M., Hahn, E.L. & Herzog, B. (1955) Phys. Rev. 97, 1699–1709.

    Article  ADS  Google Scholar 

  60. Vega, S. (1974) J. Chem. Phys. 61, 1093–1100.

    Article  ADS  Google Scholar 

  61. Stejskal, E.O. & Schaefer, J. (1974) J. Magn, Reson. 13, 249–251.

    Google Scholar 

  62. Bradford, R., Clay, C. & Stride, E. (1951) Phys. Rev. 84, 157–158.

    Article  ADS  Google Scholar 

  63. Rudakov, T.N., Mikhaltsevitch, V.T., Flexman, J.H., Hayes, P.A., & Chisholm, W.P. (2004) Appl. Magn. Reson. 25, 467–474.

    Article  Google Scholar 

  64. Marino, R.A. & Klainer, S.M. (1977) J. Chem. Phys. 67, 3388–3389.

    Article  ADS  Google Scholar 

  65. Cantor, R.S. & Waugh, J.S. (1980) J. Chem. Phys. 73, 1054–1063.

    Article  ADS  Google Scholar 

  66. Grechishkin, V.S., Anferov, V.P. & Ja., N. (1983) Adv. Nucl. Quadrupole Reson.5 1; Greschishkin, V.S. (1990) Z. Naturforsch. 45a, 559–564.

    Google Scholar 

  67. Sauer, K.L., Suits, B.H., Garroway, A.N. & Miller, J.B. (2001) Chem. Phys. Lett. 342, 362–368; (2003) J. Chem. Phys. 118, 5071–5081.

    Google Scholar 

  68. Furman, G.B. & Goren, S.D. (2002) Z. Naturforsch. 57a 315–319.

    Google Scholar 

  69. Miller, J.B., Suits, B.H., Garroway, A.N. (2001) J. Magn. Reson. 151, 228–234.

    Article  ADS  Google Scholar 

  70. Miller, J.B. & Garroway, A.N. Appl. Magn. Reson. 25, 475–483.

    Google Scholar 

  71. Ramamoorthy, A. & Narasimhan, P.T. (1990) Z. Naturforsch 45a 581–586.

    Article  Google Scholar 

  72. Ivanov, D. & Redfield, A.G. (2004) J. Magn. Reson. 166, 19–27.

    Article  ADS  Google Scholar 

  73. Slusher, R.E. & Hahn, E.L. (1968) Phys. Rev. 166, 332–347.

    Article  ADS  Google Scholar 

  74. Luznik, J., Pirnat, J. & Trontelj, Z. (2002) Sol. State Commun. 121, 653–656.

    Article  ADS  Google Scholar 

  75. Hürlimann, M.D., Pennington, C.H., Fan, N.Q., Clarke, J., Pines, A. & Hahn, E.L. (1992) Phys. Rev. Lett. 69, 684–687.

    Article  ADS  Google Scholar 

  76. TohThat, D.M. & Clarke, J. (1996) Rev. Sci. Instrum. 67, 2890–2893.

    Article  ADS  Google Scholar 

  77. Augustine, M.P., TohThat, D.M. & Clarke, J. (1998) Solid State Nucl. Magn. Reson. 11, 139–156.

    Article  Google Scholar 

  78. Greenberg, Ya.S. (1998) Rev. Mod. Phys. 70, 175–222; 2000 Rev. Mod. Phys. 72, 329.

    Article  ADS  Google Scholar 

  79. Savukov, I.M., Seltzer, S.J., Romalis, R.V. & Sauer, K.L. (2005) Phys. Rev. Lett. 95, 063004:1–4.

    Google Scholar 

  80. Eles, P.T. & Michal, C.A. (2005) J. Magn. Reson. 175, 201–209.

    Article  ADS  Google Scholar 

  81. Salman, Z., Reynard, E.P., MacFarlane, W.A., Chow K. H., Chakhalian, J., Kreitzman, S.R., Daviel, S., Levy, C.D.P., Poutissou, R. & Kiefl, R.F. (2004) Phys. Rev. B 70, 104404:1–7.

    Google Scholar 

  82. Weiss, A. & Wigand, S. (1990) Z. Naturforsch 45a, 195–212.

    Google Scholar 

  83. Fischer, C.F. (1977) The Hartree-Fock Method for Atoms (Wiley & Sons, NY).

    Google Scholar 

  84. Lindgren, I. & Rosén, A. (1974) Case Studies Atomic Phys. 4, 197–298.

    Google Scholar 

  85. Townes, C.H. & Dailey, B.P. (1949) J. Chem. Phys. 17, 782–796.

    Article  ADS  Google Scholar 

  86. Schempp, E. & Bray, PJ. (1970) Vol. IV, Chap. 11 of Henderson D (ed.) Physical Chemistry: An Advanced Treatise, Academic Press, New York, London.

    Google Scholar 

  87. Hutchings, M.T. in Seitz, F. & Turnbull, D. (eds.) (1964) Solid State Physics 16 (Academic Press, New York and London), 227–273.

    Google Scholar 

  88. Frank, F.C. (1950) Philos. Mag. 41, 1287–1289.

    MATH  Google Scholar 

  89. de Wette, F.W. & Schacher, G.E. (1965) Phys. Rev. 137, A92–A94.

    Article  Google Scholar 

  90. Kaufmann, E.N. & Vianden, R.J. (1979) Rev. Mod. Phys. 51, 161–214.

    Article  ADS  Google Scholar 

  91. Das, T.P. & Schmidt, P.C. (1986) Z. Naturforsch 41a 47–77.

    ADS  Google Scholar 

  92. Jena, P. (1976) Phys. Rev. Lett. 36, 418–421.

    Article  ADS  Google Scholar 

  93. Sternheimer, R.M. (1951) Phys. Rev. 84, 244–253; 1951 Phys. Rev. 86, 316–324; 1954 Phys. Rev. 95, 736–750; 1986 Z. Naturforsch 41a, 24–36.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Suits, B.H. (2006). NUCLEAR QUADRUPOLE RESONANCE SPECTROSCOPY. In: Vij, D. (eds) Handbook of Applied Solid State Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/0-387-37590-2_2

Download citation

Publish with us

Policies and ethics