Neural Networks Historical Review

  • D. Andina
  • A. Vega-Corona
  • J. I. Seijas
  • J. Torres-Garcìa

This chapter starts with a historical summary of the evolution of Neural Networks from the first models which are very limited in application capabilities to the present ones that make possible to think in applying automatic process to tasks that formerly had been reserved to the human intelligence. After the historical review, Neural Networks are dealt from a computational point of view. This perspective helps to compare Neural Systems with classical Computing Systems and leads to a formal and common presentation that will be used throughout the book


Neural Network Artificial Neural Network Output Layer Input Vector Little Mean Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W.W. McCulloch and W. Pitts, A Logical Calculus of the Ideas Inminent in Nervous Activity, Bulletin of Mathematical Biophysics, 5:115–133, 1943.zbMATHCrossRefMathSciNetGoogle Scholar
  2. W. Pitts and W.W. McCulloch, How We Know Universals, Bulletin of Mathematical Biophysics, 9:127–147, 1947.CrossRefGoogle Scholar
  3. D.O. Hebb, Organization of Behaviour, Science Editions, New York, 1961.Google Scholar
  4. F. Rosenblatt, Principles of Neurodynamics, Science Editions, New York, 1962.zbMATHGoogle Scholar
  5. B. Widrow, M. E. Hoff, Adaptive Switching Circuits, In IRE WESCON Convention Record, pages 96–104, 1960.Google Scholar
  6. M. Minsky, S. Papert, Perceptrons, MIT press, Cambridge, MA, 1969.zbMATHGoogle Scholar
  7. G. Cybenko, Approximation by Superposition of a Sigmoidal Function, Mathematics of Control, Signals, and Systems, 2:303–314, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  8. K. Hornik, M. Stinchcombe and H. White, Multilayer Feedforward Networks are Universal Approximators, Neural Networks, 2(5):359–366, 1989.CrossRefGoogle Scholar
  9. K. Hornik, M. Stinchcombe and H. White, Universal Aproximation of an Unknown Mapping and Its Derivatives using Multilayer Feedforward Networks, Neural Networks, 3:551–560, 1990.CrossRefGoogle Scholar
  10. S. Haykin, Neural Networks. A Comprehensive Foundation, Macmillan College Publishing, Ontario, 1994.zbMATHGoogle Scholar
  11. P.J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioural Sciences, PhD thesis, Harvard University, Boston, 1974.Google Scholar
  12. D.E. Rumerlhart, G. E. Hinton and R. J. Williams, Learning Internal Representations by Error Propagation, In D. E. Rumelhart, J. L. McClelland and the PDP Research Group, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1: Foundations, pages 318–362, MIT Press, Cambridge, MA, 1986.Google Scholar
  13. D.B. Parker, Learning Logic, Technical report, Technical Report TR-47, Cambridge, MA: MIT Center for Research in Computational Economics and Management Science, 1985.Google Scholar
  14. D.R. Hush and B.G. Horne, Progress in Supervised Neural Networks. What’s new since Lippman?, IEEE Signal Processing Magazine, 2:721–729, January, 1993.Google Scholar
  15. N.B . Karayiannis and A.N. Venetsanopoulos, Artificial Neural Networks, Learning Algorithms, Perfomance Evaluation and Applications, Kluwer Academic Publishers, Boston, MA, 1993.Google Scholar
  16. H.A. Bourland and N. Morgan, Connectionist Speech recognition. A hybrid Approach, Kluwer Academic Publishers, Boston, MA, 1994.Google Scholar
  17. B. Widrow and S.D. Stearns, Adaptative Signal Processing, Prentice-Hall, Signal Processing Series, Englewood Cliffs, NJ, 1985.Google Scholar
  18. R.P. Lipmann, An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, 328–339, April, 1987.Google Scholar
  19. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, Berlin, 1984.zbMATHGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. Andina
    • 1
  • A. Vega-Corona
    • 2
  • J. I. Seijas
    • 3
  • J. Torres-Garcìa
    • 3
  1. 1.Departamento de Señales, Sistemas y Radiocomunicaciones (SSR)Universidad Politècnica de Madrid (UPM)Ciudad Universitaria C.P. 28040España
  2. 2.Facultad de Ingenierìa, Mecànica, Elèctrica y Electrònica (FIMEE)Universidad de Guanajuato (UG)SalamancaMèxico
  3. 3.Departamento de Señales, Sistemas y Radiocomunicaciones (SSR)Universidad Politècnica de Madrid (UPM)Ciudad Universitaria C.P. 28040España

Personalised recommendations