Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Anew theory of early molecular evolution is described, proceeding from original speculations to specific predictions and their confirmations. This classical cycle is then repeated generating the earliest picture of evolving Life. First, a consensus temporal order (“chronology”) of appearance of amino acids and their respective codons on evolutionary scene is reconstructed on the basis of 60 different criteria, resulting in the order: G, A, D, V, P, S, E, L, T, R, I, Q, N, K, H, C, F, Y, M, W. It reveals two fundamental features: the amino acids synthesized in experiments imitating primordial conditions appeared first, while the amino acids associated with codon capture events came last. The reconstruction of codon chronology then follows based on the above consensus temporal order, supplemented by the stability and complementarity rules first suggested by M. Eigen and P. Schuster, and on earlier established processivity rule. The derived genealogy of all 64 codons suggests several important predictions that are confirmed: Gradual decay of glycine content in protein evolution; traces of the most ancient 6-residue long gly-rich and ala-rich minigenes in extant sequences; and manifestations of a fundamental binary code of protein sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Di Giulio M. The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Molec Evol 2003; 57:721–730.

    Article  PubMed  CAS  Google Scholar 

  2. Barbieri M. The Organic Codes. An introduction to semantic biology. Cambridge University Press, 2003.

    Google Scholar 

  3. Miller SL. A production of amino acids under possible primitive earth conditions. Science 1953; 117:528–529.

    Article  PubMed  CAS  Google Scholar 

  4. Miller SL. Which organic compounds could have occurred on the prebiotic Earth? Cold Spr Harb Symp Quant Biol 1987; 52:17–27.

    CAS  Google Scholar 

  5. Löb W. Über das Verhalten des formamids unter der wirkung der stillen entladung: Ein betrag zur frage der stickstoff-assimilation. Ber 1913; 46:684–697.

    Google Scholar 

  6. Yockey HP. Walther Löb, Stanley L. Miller and prebiotic “building blocks” in the silent electrical discharge. Persp Biol Med 1997; 41:125–131.

    Google Scholar 

  7. Trifonov EN, Bettecken T. Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene 1997; 205:1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Ohshima K, Kang S, Wells RD. CTG triplet repeats from human hereditary diseases are dominant genetic expansion products in Escherichia coli. J Biol Chem 1996; 271:1853–1856.

    Article  PubMed  CAS  Google Scholar 

  9. Trifonov EN. Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. J Molec Biol 1987; 194:643–652.

    Article  PubMed  CAS  Google Scholar 

  10. Lagunez-Otero J, Trifonov EN. mRNA periodical infrastructure complementary to the proof-reading site in the ribosome. J Biomolec Str Dyn 1992; 10:455–464.

    CAS  Google Scholar 

  11. Eriani G, Delarue M, Poch O et al. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 1990; 347:203–206.

    Article  PubMed  CAS  Google Scholar 

  12. Trifonov EN. The triplet code frm first principles. J Biomol Struct Dyn 2004; 22:1–11.

    PubMed  CAS  Google Scholar 

  13. Osawa S, Jukes TS, Watanabe K et al. Recent evidence for evolution of the genetic code. Microb Rev 1992; 56:229–264.

    CAS  Google Scholar 

  14. Eigen M, Schuster P. The hypercycle. A principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften 1978; 65:341–369.

    Article  CAS  Google Scholar 

  15. Trifonov EN. Glycine clock: Eubacteria first, Archaea next, protoctista, Fungi, Planta and Animalia at last. Gene Therapy Mol Biol 1999; 4:313–322.

    Google Scholar 

  16. Trifonov EN, Kirzhner A, Kirzhner VM et al. Distinct stages of protein evolution as suggested by protein sequence analysis. J Mol Evol 2001; 53:394–401.

    Article  PubMed  CAS  Google Scholar 

  17. Altschul SF. Amino acid substitution matrices from an information theoretic perspective. J Mol Biol 1991; 219:555–565.

    Article  PubMed  CAS  Google Scholar 

  18. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 1992; 89:10915–10919.

    Article  PubMed  CAS  Google Scholar 

  19. Berezovsky IN, Grosberg AY, Trifonov EN. Closed loops of nearly standard size: Common basic element of protein structure. FEBS Letters 2000; 466:283–286.

    Article  PubMed  CAS  Google Scholar 

  20. Berezovsky IN, Kirzhner VM, Kirzhner A et al. Protein sequences yield a proteomic code. J Biomol Struct Dyn 2003; 21:317–325.

    PubMed  CAS  Google Scholar 

  21. Berezovsky IN, Kirzhner A, Kirzhner VM et al. Spelling protein structure. J Biomol Struct Dyn 2003; 21:327–339.

    PubMed  CAS  Google Scholar 

  22. Trifonov EN. Segmented genome: Elementary units of genome structure. Russian J Genetics 2002; 38:659–663.

    Article  CAS  Google Scholar 

  23. Berman AL, Kolker E, Trifonov EN. Underlying order in protein sequence organization. Proc Natl Acad Sci USA 1994; 91:4044–4047.

    Article  PubMed  CAS  Google Scholar 

  24. Kolker E, Tjaden BC, Hubley R et al. Spectral analysis of distributions: Finding periodic components in eukaryotic enzyme length data. OMICS: Journal Integr Biol 2002; 6:123–130.

    Article  CAS  Google Scholar 

  25. Shore D, Langowski J, Baldwin RL. DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 1981; 78:4833–4837.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Trifonov, E.N. (2006). Theory of Early Molecular Evolution. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_9

Download citation

Publish with us

Policies and ethics