Skip to main content

The Predictive Power of Molecular Network Modelling

Case Studies of Predictions with Subsequent Experimental Verification

  • Chapter

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Since the 1960s, the mathematical modelling of intracellular systems, such as metabolic pathways, signal transduction cascades and transport processes, is an ever-increasing field of research. The results of most modelling studies in this field are in good qualitative or even quantitative agreement with experimental results. However, a widely held view among many experimentalists is that modelling and simulation only reproduce what has been known before from experiment. A true justification of theoretical biology would arise if theoreticians could predict something unknown, which would later be found experimentally. Theoretical physics has achieved this justification by making many right predictions, for example, on the existence of positrons. Here, we review three cases where experimental groups that were independent of the theoreticians who had made the predictions confirmed theoretical predictions on features of intracellular biological systems later. The three cases concern the optimal time course of gene expression in metabolic pathways, the operation of a metabolic route involving part of the tricarboxylic acid cycle and glyoxylate shunt, and the decoding of calcium oscillations by calcium-dependent protein kinases.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henri MV. Théorie générale de l’action de quelques diastases. Compt Rend Acad Sci 1902; 135:916–919.

    CAS  Google Scholar 

  2. Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. Biochem Z 1913; 49:333–369.

    CAS  Google Scholar 

  3. Garfinkel D, Hess B. Metabolic control mechanisms. VII. A detailed computer model of the glycolytic pathway in ascites cells. J Biol Chem 1964; 239:971–983.

    PubMed  CAS  Google Scholar 

  4. Higgins J. A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc Nad Acad Sci USA 1964; 51:989–994.

    CrossRef  CAS  Google Scholar 

  5. Weinberg S. The Quantum Theory of Fields. Vol I. Cambridge: Cambridge University Press, 1995.

    Google Scholar 

  6. De Gennes PC Analogy between superconductors and smectics-A. Solid State Comm 1972; 10:753–756.

    CrossRef  Google Scholar 

  7. Renn SR, Lubensky TC. Abrikosov dislocation lattice in a model of the cholesteric to smectic-A transition. Phys Rev A 1988; 38:2132–2147.

    CrossRef  PubMed  Google Scholar 

  8. Tinkham M. Introduction to Superconductivity. New York: McGraw-Hill, 1975.

    Google Scholar 

  9. Goodby JW, Waugh MA, Stein SM et al. Characterization of a new helical smectic liquid-crystal. Nature 1989; 337:449–452.

    CrossRef  CAS  Google Scholar 

  10. Eisenhaber F, Persson B, Argos P. Protein structure prediction: Recognition of primary, secondary, and tertiary structural features from amino acid sequence. Crit Rev Biochem Mol Biol 1995; 30:1–94.

    PubMed  CAS  Google Scholar 

  11. Hofbauer J, Sigmund K. Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  12. Levin SA, Muller-Landau HC. The emergence of diversity in plant communities. CR Acad Sci Paris Life Sci 2000; 323:129–139.

    CAS  Google Scholar 

  13. Pfeiffer T, Schuster S. Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem Sci 2005; 30:20–25.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Heinrich R, Schuster S. The Regulation of Cellular Systems. New York: Chapman & Hall, 1996.

    Google Scholar 

  15. Meléndez-Hevia E, Waddell TG, Cascante M. The puzzle of the Krebs citric acid cycle: Assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic path ways during evolution. J Mol Evol 1996; 43:293–303.

    PubMed  Google Scholar 

  16. Kacser H, Beeby R. Evolution of catalytic proteins. On the origin of enzyme species by means of natural selection. J Mol Evol 1984; 20:38–51.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Heinrich R, Klipp E. Control analysis of unbranched enzymatic chains in states of maximal activity. J theor Biol 1996; 182:243–252.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Stephani A, Nuño JC, Heinrich R. Optimal stoichiometric designs of ATP-producing systems as determined by an evolutionary algorithm. J theor Biol 1999; 199:45–61.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Goldbeter A, Koshland Jr DE. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem 1984; 259:14441–14447.

    PubMed  CAS  Google Scholar 

  20. Stucki JW. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 1980; 109:269–283.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Brown GC. Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. J theor Biol 1991; 153:195–203.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Huynen MA, Dandekar T, Bork P. Variation and evolution of the citric-acid cycle: A genomic perspective. Trends Microbiol 1999; 7:281–291.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Papin JA, Price ND, Wiback SJ et al. Metabolic pathways in the post-genome era. Trends Biochem Sci 2003; 28:250–258.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Schuster S. Metabolic pathway analysis in biotechnology. In: Kholodenko BN, Westerhoff HV, eds. Metabolic Engineering in the Post Genomic Era. Wymondham: Horizon Scientific, 2004:181–208.

    Google Scholar 

  25. Cuthbertson KSR, Cobbold PH. Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature 1985; 316:541–542.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Woods NM, Cuthbertson KSR, Cobbold PH. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 1986; 319:600–602.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Meyer T, Stryer L. Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 1988; 85:5051–5055.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Schuster S, Marhl M, Höfer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 2002; 269:1333–1355.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Falcke M. Reading the patterns in living cells — the physics of Ca2+ signaling. Adv Phys 2004; 53:255–440.

    CrossRef  CAS  Google Scholar 

  30. Klipp E, Heinrich R, Holzhütter HG. Prediction of temporal gene expression. Metabolic opimization by re-distribution of enzyme activities. Eur J Biochem 2002; 269:5406–5413.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective. 1. Theoretical preliminaries. Biotechnol Prog 1999; 15:407–425.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Zaslaver A, Mayo AE, Rosenberg R et al. Just-in-time transcription program in metabolic pathways. Nature Genet 2004; 36:486–491.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 1974; 42:89–95.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Schuster S, Hilgetag C. On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 1994; 2:165–182.

    CrossRef  Google Scholar 

  35. Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 1999; 17:53–60.

    CrossRef  PubMed  CAS  Google Scholar 

  36. Schuster S, Hilgetag C, Woods JH et al. Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism. J Math Biol 2002; 45:1530–181.

    CrossRef  Google Scholar 

  37. Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J theor Biol 2000; 203:229–248.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Fischer E, Sauer U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 2003; 278:46446–46451.

    CrossRef  PubMed  CAS  Google Scholar 

  39. Liao JC, Hou S-Y, Chao Y-P. Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechn Bioeng 1996; 52:129–140.

    CrossRef  CAS  Google Scholar 

  40. Goldbeter A, Dupont G, Berridge MJ. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 1990; 87:1461–1465.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Miller SG, Kennedy MB. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch. Cell 1986; 44:861–870.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Lisman JE, Goldring MA. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci USA 1988; 85:5320–5324.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Dupont G, Goldbeter A. Protein phosphorylation driven by intracellular calcium oscillations: A kinetic analysis. Biophys Chem 1992; 42:257–270.

    CrossRef  PubMed  CAS  Google Scholar 

  44. Meyer T, Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem 1991; 20:153–174.

    CrossRef  PubMed  CAS  Google Scholar 

  45. Hanson PI, Meyer T, Stryer L et al. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 1994; 12:943–956.

    CrossRef  PubMed  CAS  Google Scholar 

  46. Michelson S, Schulman H. CaM kinase: A model for its activation dynamics. J theor Biol 1994; 171:281–290.

    CrossRef  CAS  Google Scholar 

  47. Dosemeci A, Albers RW. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II. Biophys J 1996; 70:2493–2501.

    CrossRef  PubMed  CAS  Google Scholar 

  48. De Koninck P, Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 1998; 279:227–230.

    CrossRef  PubMed  Google Scholar 

  49. Dupont G, Goldbeter A. CaM kinase II as frequency decoder of Ca2+ oscillations. BioEssays 1998; 20:607–610.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Dupont G, Houart G, De Koninck P. Sensitivity of CaM kinase II to the frequency of Ca2+oscillations: A simple model. Cell Calcium 2003; 34:485–497.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Kubota Y, Bower JM. Transient versus asymptotic dynamics of CaM kinase II: Possible roles of phosphatase. J Comput Neurosci 2001; 11:263–279.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Lisman JE. A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase. Proc Natl Acad Sci USA 1985; 82:3055–3057.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Schuster, S., Klipp, E., Marhl, M. (2006). The Predictive Power of Molecular Network Modelling. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_8

Download citation

Publish with us

Policies and ethics