Skip to main content

Model-Based Inference of Transcriptional Regulatory Mechanisms from DNA Microarray Data

  • Chapter
  • 650 Accesses

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

The development of DNA microarray technology has made it possible to monitor the mRNA abundance of all genes simultaneously (the transcriptome) for a variety of cellular conditions. In addition, microarray-based genomewide measurements of promoter occupancy (the occupome) are now available for an increasing number of transcription factors. With this data and the complete genome sequence of many important organisms, it is becoming possible to quantitatively model the molecular computation performed at each promoter, which has as input the nuclear concentration of the active form of various regulatory proteins (the regulome) and as output a transcription rate, which in turn determines mRNA abundance. In this chapter, we describe how our group has used multivariate linear regression methods to: (i) discover cis-regulatory elements in upstream regulatory regions in an unbiased manner; (ii) infer a regulatory activity profile across conditions for each transcription factor; and (iii) determine whether the mRNA expression level of a gene whose promoter is occupied by a particular transcription factor is truly regulated by that factor, through integrated modeling of expression and promoter occupancy data. Together, these results show model-based analysis of functional genomics data to be a versatile conceptual and practical framework for the elucidation of regulatory circuitry, and a powerful alternative to the currently prevalent clustering-based methods.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cherry JM, Ball C, Weng S et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature 1997; 387(6632 Suppl):67–73.

    PubMed  CAS  Google Scholar 

  2. Adams MD, Celniker SE, Holt RA et al. The genome sequence of Drosophila melanogaster. Science 2000; 287(5461):2185–95.

    CrossRef  PubMed  Google Scholar 

  3. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822):860–921.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Waterston RH, Lindblad-Toh K, Birney E et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915):520–62.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Schena M, Shalon D, Davis RW et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995; 270(5235):467–70.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Lockhart DJ, Dong H, Byrne MC et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14(13):1675–80.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Ren B, Robert F, Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290(5500):2306–9.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Iyer VR, Horak CE, Scafe CS et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001; 409(6819):533–8.

    CrossRef  PubMed  CAS  Google Scholar 

  9. van Steensel B, Delrow J, Henikoff S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 2001; 27(3):304–8.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Claverie JM. Gene number. What if there are only 30,000 human genes? Science 2001; 291(5507):1255–7.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Banerjee N, Zhang MQ. Functional genomics as applied to mapping transcription regulatory networks. Curr Opin Microbiol 2002; 5(3):313–7.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Fickett JW, Wasserman W. Discovery and modeling of transcriptional regulatory regions. Curr Opin Biotechnol 2000; 11(1):19–24.

    CrossRef  PubMed  CAS  Google Scholar 

  13. van Helden J, Andre B, Collado-Vides J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 1998; 281(5):827–42.

    CrossRef  PubMed  Google Scholar 

  14. Tavazoie S, Hughes JD, Campbell MJ et al. Systematic determination of genetic network architecture. Nat Genet 1999; 22(3):281–5.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25(1):25–9.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Zeeberg BR, Feng W, Wang G et al. GoMiner: A resource for biological interpretation of genomic and proteomic data. Genome Biol 2003; 4(4):R28.

    CrossRef  PubMed  Google Scholar 

  17. Pavlidis P, Lewis DP, Noble WS. Exploring gene expression data with class scores. Pac Symp Biocomput 2002:474–85.

    Google Scholar 

  18. Lascaris R, Bussemaker HJ, Boorsma A et al. Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biol 2003; 4(1):R3.

    CrossRef  PubMed  Google Scholar 

  19. Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression. Nat Genet 2001; 27(2):167–71.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Keles S, van der Laan M, Eisen MB. Identification of regulatory elements using a feature selection method. Bioinformatics 2002; 18(9):1167–75.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Wang W, Cherry JM, Botstein D et al. A systematic approach to reconstructing transcription networks in Saccharomy cescerevisiae. Proc Natl Acad Sci USA 2002; 99(26):16893–8.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Conlon EM, Liu XS, Lieb JD et al. Integrating regulatory motif discovery and genome-wide expression analysis. Proc Natl Acad Sci USA 2003; 100(6):3339–44.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Jobson JD. Applied multivariate regression analysis Volume 1: Regression and Experimental Design. New York: Springer, 1991.

    Google Scholar 

  24. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 1990; 9(7):811–8.

    PubMed  CAS  Google Scholar 

  25. Chu S, DeRisi J, Eisen M et al. The transcriptional program of sporulation in budding yeast. Science 1998; 282(5389):699–705.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Koerkamp MG, Rep M, Bussemaker HJ et al. Dissection of transient oxidative stress response in saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell 2002; 13(8):2783–94.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Segal E, Shapira M, Regev A et al. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003; 34(2):166–76.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Ihmels J, Friedlander G, Bergmann S et al. Revealing modular organization in the yeast transcriptional network. Nat Genet 2002; 31(4):370–7.

    PubMed  CAS  Google Scholar 

  29. Zhu Z, Pilpel Y, Church GM. Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. J Mol Biol 2002; 318(1):71–81.

    CrossRef  PubMed  CAS  Google Scholar 

  30. van Steensel B, Delrow J, Bussemaker HJ. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc Natl Acad Sci USA 2003; 100(5):2580–5.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Orian A, Van Steensel B, Delrow J et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 2003.

    Google Scholar 

  32. Gao F, Foat BC, Bussemaker HJ. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 2004; 5:31.

    CrossRef  PubMed  Google Scholar 

  33. Lee TI, Rinaldi NJ, Robert F et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002; 298(5594):799–804.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Spellman PT, Sherlock G, Zhang MQ et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998; 9(12):3273–97.

    PubMed  CAS  Google Scholar 

  35. Beer MA, Tavazoie S. Predicting gene expression from sequence. Cell 2004; 117(2):185–98.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bussemaker, H.J. (2006). Model-Based Inference of Transcriptional Regulatory Mechanisms from DNA Microarray Data. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_7

Download citation

Publish with us

Policies and ethics