Skip to main content

Clues from Three-Dimensional Structure Analysis and Molecular Modelling

New Insights into Cytochrome P450 Mechanisms and Functions

  • Chapter
  • 647 Accesses

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Cytochrome P450 is a focus of attention as it comprises one of the largest superfamilies of enzyme proteins. Metabolization of many drugs is affected by cytochrome P450. It is an attractive drug target, e.g., cytochrome P450s of Mycobacterium tuberculosis are promising targets in the fight against tuberculosis. The structure provides new insights for investigation of structure/mechanism of cytochrome P450, and for rational design of inhibitor molecules. We will illustrate how biocomputing and bioinformatical techniques reveal details, functions and further secrets of this exciting molecule. Molecular modelling along with site-directed mutagenesis of P450 2B1 elucidated the molecular determinants of substrate specifity. Regioselectivity of progesterone hydroxylation by cytochrome P450 2B1 was reengineered based on the X-ray structure of cytochrome 2C5. Docking approaches rationalized the regioselectivity of the reengineered cytochrome P450 2B1. Furthermore, by methods of molecular dynamic simulations, routes were identified by which substrates may enter into and products exit from the active site of cytochrome P450.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuler MA, Werck-Reichhart D. Functional genomics of P450s. Annu Rev Plant Biol 2003; 54:629–667.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Werck-Reichhart D, Feyereisen R. Cytochromes P450: A success story. Genome Biol 2000; 1(6):RE-VIEWS3003.

    Google Scholar 

  3. Graham-Lorence S, Peterson JA. P450s: Structural similarities and functional differences. FASEB J 1996; 10(2):206–214.

    PubMed  CAS  Google Scholar 

  4. Mueller EJ, Loida PJ, Sligar SG. In: Ortiz de Montellano PR, ed. Cytochrome P450: Structure, Mechanism, and Biochemistry. New York and London: Plenum Press, 2003:83–124.

    Google Scholar 

  5. David Nelson’s homepage. http://drnelson.utmem.edu/CytochromeP450.html.

    Google Scholar 

  6. Russell RB, Sternberg MJ. Structure prediction. How good are we? Curr Biol 1995; 5(5):488–490.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Sali A, Overington JP, Johnson MS et al. From comparisons of protein sequences and structures to protein modelling and design. Trends Biochem Sci 1990; 15(6):235–240.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Wester MR, Johnson EF, Marques-Soares C et al. Structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 A resolution: Evidence for multiple substrate binding modes. Bio chemistry 2003; 42(21):6370–6379.

    CAS  Google Scholar 

  9. Scott EE, White MA, He YA et al. Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: Insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 2004; 279(26):27294–27301.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Guex N, Peitsch MC. SWISS-MODEL and the swiss-Pdbviewer: An environment for comparative protein modeling. Electrophoresis 1997; 18(15):2714–2723.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Lund O, Nielsen M, Lundegaard P et al. CPH models 2.0:X3M a computer program to extract 3D models. Abstract at the CASP 5 conference 2002; A102.

    Google Scholar 

  12. Marti-Renom MA, Stuart AC, Fiser A et al. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000; 29:291–325.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Rodriguez R, Chinea G, Lopez N et al. Homology modeling, model and software evaluation: Three related resources. Bioinformatics 1998; 14(6):523–528.

    CrossRef  PubMed  CAS  Google Scholar 

  14. InsightII. San Diego, CA: Accelerys.

    Google Scholar 

  15. SYBYL 6.5. South Hanley Rd., St. Louis, Missouri, USA: Tripos Inc., 1699:63144.

    Google Scholar 

  16. Kumar S, Scott EE, Liu H et al. A rational approach to Reengineer cytochrome P450 2B1 regioselectivity based on the crystal structure of cytochrome P450 2C5. J Biol Chem 2003; 278(19):17178–17184.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Jones DT, Thornton JM. Potential energy functions for threading. Curr Opin Struct Biol 1996; 6(2):210–216.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Jones DT. Progress in protein structure prediction. Curr Opin Struct Biol 1997; 7(3):377–387.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Sippl MJ, Flockner H. Threading thrills and threats. Structure 1996; 4(1):15–19.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Murzin AG, Brenner SE, Hubbard T et al. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995; 247:536–540.

    CrossRef  PubMed  CAS  Google Scholar 

  21. Koonin EV, Wolf YI, Karev GP. The structure of the protein universe and genome evolution. Nature 2002; 420(6912):218–223.

    CrossRef  PubMed  CAS  Google Scholar 

  22. Jones DT. GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 1999; 287(4):797–815.

    CrossRef  PubMed  CAS  Google Scholar 

  23. McGuffin LJ, Jones DT. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 2003; 19(7):874–881.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 2000; 299(2):499–520.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Aloy P, Stark A, Hadley C et al. Predictions without templates: New folds, secondary structure, and contacts in CASP5. Proteins 2003; 53(Suppl 6):436–456.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Kinch LN, Wrabl JO, Krishna SS et al. CASP5 assessment of fold recognition target predictions. Proteins 2003; 53(Suppl 6):395–409.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 53(Suppl 6):352–368.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Dandekar T, Argos P. Applying experimental data to protein fold prediction with the genetic algorithm. Protein Eng 1997; 10(8):877–893.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Hooft RW, Vriend G, Sander C et al. Errors in protein structures. Nature 1996; 381(6580):272.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Laskowski RA, MacArthur MW, Moss DS et al. PROCHECK: A program to check the stere-ochemical quality of protein structures. J Appl Cryst 1993; 26:283–291.

    CrossRef  CAS  Google Scholar 

  31. Halperin I, Ma B, Wolfson H et al. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002; 47(4):409–443.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Smith GR, Sternberg MJ. Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 2002; 12(1):28–35.

    CrossRef  PubMed  Google Scholar 

  33. Abagyan R, Totrov M. High-throughput docking for lead generation. Curr Opin Chem Biol 2001; 5(4):375–382.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Shoichet BK, McGovern SL, Wei B et al. Lead discovery using molecular docking. Curr Opin Chem Biol 2002; 6(4):439–446.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Ewing TJ, Makino S, Skillman AG. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol 2001; 15(5):411–428.

    CrossRef  CAS  Google Scholar 

  36. Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 1985; 28(7):849–857.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Wade RC, Goodford PJ. Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the ability to form more than two hydrogen bonds. J Med Chem 1993; 36(1):148–156.

    CrossRef  PubMed  CAS  Google Scholar 

  38. Morris GM, Goodsell DS, Halliday RS et al. Automated docking using a lamarckian genetic algorithm and and empirical binding free energy function. J Comput Chem 1998; 19:1639–1662.

    CrossRef  CAS  Google Scholar 

  39. Gabb HA, Jackson RM, Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997; 272(1):106–120.

    CrossRef  PubMed  CAS  Google Scholar 

  40. Munro AW, McLean KJ, Marshall KR et al. Cytochromes P450: Novel drug targets in the war against multidrug-resistant Mycobacterium tuberculosis. Biochem Soc Trans 2003; 31 (Pt 3):625–630.

    CrossRef  PubMed  CAS  Google Scholar 

  41. Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. Curr Opin Struct Biol 2002; 12(2):190–196.

    CrossRef  PubMed  CAS  Google Scholar 

  42. Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002; 9(9):646–652.

    CrossRef  PubMed  CAS  Google Scholar 

  43. Jorgensen W, Tirado-Rives J. The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 1988; 110:1657–1666.

    CrossRef  CAS  Google Scholar 

  44. Brooks B, Bruccoleri R, Olafson B et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Comp Chem 1983; 4:187–217.

    CrossRef  CAS  Google Scholar 

  45. Schuler LD, Daura X, van Gunsteren WF. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comp Chem 2001; 22:1205.

    CrossRef  CAS  Google Scholar 

  46. Cornell WD, Cieplak P, Payly CI et al. A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 1995; 117:5179–5197.

    CrossRef  CAS  Google Scholar 

  47. Grubmuller H, Heymann B, Tavan P. Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force. Science 1996; 271(5251):997–999.

    CrossRef  PubMed  CAS  Google Scholar 

  48. Isralewitz B, Gao M, Schulten K. Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 2001; 1l(2):224–230.

    CrossRef  Google Scholar 

  49. Izrailev S, Stepaniants S, Balsera M et al. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 1997; 72(4):1568–1581.

    CrossRef  PubMed  CAS  Google Scholar 

  50. Scott EE, Liu H, Qun He Y et al. Mutagenesis and molecular dynamics suggest structural and functional roles for residues in the N-terminal portion of the cytochrome P450 2B1 I helix. Arch Biochem Biophys 2004; 423(2):266–276.

    CrossRef  PubMed  CAS  Google Scholar 

  51. Ludemann SK, Lounnas V, Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 2000; 303(5):797–811.

    CrossRef  PubMed  CAS  Google Scholar 

  52. Wade RC, Winn PJ, Schlichting I et al. A survey of active site access channels in cytochromes P450. J Inorg Biochem 2004; 98(7):1175–1182.

    CrossRef  PubMed  CAS  Google Scholar 

  53. DeLano WL. The PyMOL molecular graphics system on world wide web http://www.pymol.org.; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Schleinkofer, K., Dandekar, T. (2006). Clues from Three-Dimensional Structure Analysis and Molecular Modelling. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_3

Download citation

Publish with us

Policies and ethics