Skip to main content

Understanding the Functional Importance of Human Single Nucleotide Polymorphisms

  • Chapter
  • 670 Accesses

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Single nucleotide polymorphisms (SNPs) are the major source of human genetic variation, and the functional subset of SNPs, predominantly in protein coding regions, contributes to phenotypic variation. However, much of the variation in coding regions may not produce any functional effects. There are two broad strategies for classifying polymorphism as functional or neutral: sequence-based methods predict functional significance based on conservation scores calculated from alignments of homologous gene sequences; structure-based methods map variations to known protein structures and predict likely effects based on properties of proteins. Several tools have been developed to classify polymorphism as functional or neutral based on these methods. It was shown that most of functional SNPs are evolutionarily deleterious. Though the utility of the tools has not yet been adequately demonstrated, they may have important applications in the area of medical genetics.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins F, Brooks L, Chakravarti A. A dna polymorphism discovery resource for research on human genetic variation. Genome Res 1998; 8:703–705.

    Google Scholar 

  2. Sunyaev S, Ramensky V, Bork P. Towards a structural basis of human nonsynonymous single nucleotide polymorphisms. Trends Genet 2000; 16:198–200.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Ramensky V, Bork P, Sunyaev S. Human nonsynonymous snps: Server and survey. Nucleic Acids Res 2002; 30:3894–3900.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Ng P, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001; 11:863–874.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Henikoff S, Henikoff J. Position-based sequence weights. J Mol Biol 1994; 243:574–578.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Sunyaev S, Eisenhaber F, Rodchenkov I et al. Psic: Profile extraction from sequence alignments with position-specific counts of independent observations. Protein Eng 1999; 12:387–394.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Miller M, Kumar S. Understanding human disease mutations through the use of interspecific genetic variation. Hum Mol Genet 2001; 10:2319–2328.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Chasman D, Adams R. Predicting the functional consequences of nonsynonymous single nucleotide polymorphisms: Structurebased assessment of amino-acid variation. J Mol Biol 2001; 307:683–706.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Wang Z, Moult J. Snps, protein structure and disease. Hum Mutat 2001; 17:263–270.

    CrossRef  PubMed  Google Scholar 

  10. Ferrer-Costa C, Orozco M, de la Cruz X. Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. J Mol Biol 2002; 315:771–786.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Mooney S, Altman R. Mutdb: Annotating human variation with functionally relevant data. Bioinformatics 2003; 19:1858–1860.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Saunders C, Baker D. Evaluation of structural and evolutionary contribution to deleterious mutation prediction. J Mol Biol 2002; 322:891–901.

    CrossRef  PubMed  CAS  Google Scholar 

  13. Krawczak M, Cooper D. The human gene mutation database. Trends Genet 1997; 13:121–122.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Fredman D, Siegfried M, Yuan Y et al. Hgvbase: A human sequence variation database emphasizing data quality and a broad spectrum of data sources. Nucleic Acids Res 2002; 30:387–391.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Halushka M, Fan J, Bentley K et al. Patterns of single-nudeotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 1999; 22:239–247.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Fay J, Wyckoff G, Wu C. Positive and negative selection on the human genome. Genetics 2001; 158:1227–1234.

    PubMed  CAS  Google Scholar 

  17. Hughes A, Packer B, Welch R et al. Widespread purifying selection at polymorphic sites in huam protein-coding loci. Proc Natl Acad Sci USA 2003; 100:15754–15757.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Akey J, Zhang G, Zhang K et al. Interrogating a high-density snp map for signatures of natural selection. Genome Res 2002; 12:1805–1814.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Sunyaev S, Kondrashov F, Bork P et al. Impact of selection, mutation rate and genetic drift on human genetic variation. Hum Mol Genet 2003; 12:3325–3330.

    CrossRef  PubMed  CAS  Google Scholar 

  20. Group TISMW. A map of human genome sequence variation containing 1.4 million snps. Nature 2001; 409:928–933.

    CrossRef  Google Scholar 

  21. Sunyaev S, Ramensky V, Kock I et al. Prediction of deleterious human alleles. Hum Mol Genet 2001; 10.

    Google Scholar 

  22. Lander E. The new genomics: global views of biology. Science 1996; 274:536–539.

    CrossRef  PubMed  CAS  Google Scholar 

  23. Chakravarti A. Population genetics—making sense out of sequence. Nat Genet 1999; 21:56–60.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Reich D, Lander E. On the allelic spectrum of human disease. Trends Genet 2001; 17:502–510.

    CrossRef  PubMed  CAS  Google Scholar 

  25. Partridge L, Gems D. Mechanisms of ageing: Public or private? Nat Rev Genet 2002; 3:165–175.

    CrossRef  PubMed  CAS  Google Scholar 

  26. Wright A, Charlesworth B, Rudan I et al. A polygenic basis for late-onset disease. Trends Genet 2003; 19:97–106.

    CrossRef  PubMed  CAS  Google Scholar 

  27. Altmüller J, Palmer L, Fischer G et al. Genomewide scans of complex human diseases: True linkage is hard to find. Am J Hum Genet 2001; 69:936–950.

    CrossRef  PubMed  Google Scholar 

  28. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273:1516–1517.

    CrossRef  PubMed  CAS  Google Scholar 

  29. Gabriel S, Schaffner S, Nguyen H et al. The structure of haplotype blocks in the human genome. Science 2002; 296:2225–2229.

    CrossRef  PubMed  CAS  Google Scholar 

  30. Wright A, Carothers A, Pirastu M. Population choice in mapping genes for complex diseases. Nat Genet 1999; 23:397–404.

    CrossRef  PubMed  CAS  Google Scholar 

  31. Pritchard J, Cox N. The allelic architecture of human disease genes: Common disease-common variant, or not? Hum Mol Genet 2002; 11:2417–2423.

    CrossRef  PubMed  CAS  Google Scholar 

  32. Terwilliger J, Haghighi F, Hiekkalinna T et al. A bias-ed assessment of the use of snps in human complex traits. Curr Opin Genet Dev 2002; 12:726–734.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Asthana, S., Sunyaev, S. (2006). Understanding the Functional Importance of Human Single Nucleotide Polymorphisms. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_11

Download citation

Publish with us

Policies and ethics