Skip to main content

Hitchhiking Mapping

Limitations and Potential for the Identification of Ecologically Important Genes

  • Chapter
  • 656 Accesses

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

A recent series of publications demonstrated that identification of genomic regions subjected to positive selection (hitchhiking mapping) is possible and could be applied in an ecological context. This review focuses on the use of microsatellite markers in genome scans for the identification of beneficial mutations. The pitfalls and potential of the lnR6 test statistic are discussed as well as different approaches for the identification of the molecular change(s) underlying an observed selective sweep.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics. Nat Rev Genet 2003; 4(8):651–657.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Schlötterer C. Towards a molecular characterization of adaptation in local populations. Current Opinions in Genetics & Development 2002; 12:683–687.

    CrossRef  Google Scholar 

  3. Schlötterer C. Hitchhiking mapping-functional genomics from the population genetics perspective. Trends Genet 2003; 19(1):32–38.

    CrossRef  PubMed  Google Scholar 

  4. Harr B, Kauer M, Schlötterer C. Hitchhiking mapping-a population based fine mapping strategy for adaptive mutations in D. melanogaster PNAS 2002; 99:12949–12954.

    CrossRef  PubMed  CAS  Google Scholar 

  5. Kohn MH, Pelz HJ, Wayne RK. Natural selection mapping of the warfarin-resistance gene. PNAS 2000; 97(14):7911–7915.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Maynard Smith J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res 1974; 23:23–35.

    Google Scholar 

  7. Otto SP. Detecting the form of selection from DNA sequence data. TIG 2000; 16:526–529.

    PubMed  CAS  Google Scholar 

  8. Kreitman M. Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 2000; 1:539–559.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123:585–595.

    PubMed  CAS  Google Scholar 

  10. Nielsen R. Statistical tests of selective neutrality in the age of genomics. Heredity 2001; 86:641–647.

    CrossRef  PubMed  CAS  Google Scholar 

  11. Luikart G, England PR, Tallmon D et al. The power and promise of population genomics: From genotyping to genome typing. Nat Rev Genet 2003; 4(12):981–994.

    CrossRef  PubMed  CAS  Google Scholar 

  12. Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 1989; 44:397–401.

    PubMed  CAS  Google Scholar 

  13. Weber JL, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 1989; 44:388–396.

    PubMed  CAS  Google Scholar 

  14. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. NAR 1989; 17:6463–6471.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Schlötterer C. The evolution of molecular markers-just a matter of fashion? Nat Review Genet 2004; 5:63–69.

    CrossRef  CAS  Google Scholar 

  16. Schlotterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma 2000; 109:365–371.

    PubMed  CAS  Google Scholar 

  17. Ellegren H. Microsatellite mutations in the germline: Implications for evolutionary inference. Trends Genet 2000; 16(12):551–558.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Ohta T, Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 1973; 22:201–204.

    CrossRef  Google Scholar 

  19. Di Rienzo A, Donnelly P, Toomajian C et al. Heterogeneity of microsatellite mutations within and between loci and implications for human demographic histories. Genetics 1998; 148:1269–1284.

    PubMed  Google Scholar 

  20. Harr B, Zangerl B, Brem G et al. Conservation of locus specific microsatellite variability across species: A comparison of two Drosophila sibling species D. melanogaster and D simulans MBE 1998; 15:176–184.

    CAS  Google Scholar 

  21. Schlötterer C. A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 2002; 160(2):753–763.

    PubMed  Google Scholar 

  22. Schlötterer C, Dieringer D. A novel test statistic for the identification of local selective sweeps based on microsatellite gene diversity. In: Nurminsky DI, ed. Selective Sweep. Georgetown: Landes Bioscience, 2005:55–64.

    Google Scholar 

  23. Moran PAP. Wandering distributions and electrophoretic profile. Theoretical Population Biology 1975; 8:318–330.

    CrossRef  PubMed  CAS  Google Scholar 

  24. Kauer MO, Dieringer D, Schlötterer C. A microsatellite variability screen for positive selection associated with the “out of Africa” habitat expansion of Drosophila melanogaster. Genetics 2003; 165(3):1137–1148.

    PubMed  CAS  Google Scholar 

  25. Schlötterer C, Kauer M, Dieringer D. Allele excess at neutrally evolving microsatellites and the implications for tests of neutrality. Proc Roy Soc Lond B 2004; in press.

    Google Scholar 

  26. Schlötterer C, Wiehe T. Microsatellites, a neutral marker to infer selective sweeps. In: Goldstein D, Schlötterer C, eds. Microsatellites-Evolution and Applications. Oxford: Oxford University Press, 1999:238–248.

    Google Scholar 

  27. Wiehe T. The effect of selective sweeps on the variance of the allele distribution of a linked multi-allele locus-hitchhiking of microsatellites. Theoretical Population Biology 1998; 53:272–283.

    CrossRef  PubMed  CAS  Google Scholar 

  28. Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 2002; 160(2):765–777.

    PubMed  CAS  Google Scholar 

  29. Singh RS, Long A. Geographic variation in Drosopila: From molecules to morphology and back. TREE 1992; 7(10):340–345.

    Google Scholar 

  30. van Delden W, Kamping A. Worldwide latitudinal clines for the alcohol dehydrogenase polymorphism in Drosophila melanogaster: What is the unit of selection. EXS 1997; 83:97–115.

    PubMed  Google Scholar 

  31. Gilchrist AS, Partridge L. A comparison of the genetic basis of wing size divergence in three parallel body size clines of Drosophila melanogaster. Genetics 1999; 153(4):1775–1787.

    PubMed  CAS  Google Scholar 

  32. Calboli FC, Kennington WJ, Partridge L. QTL mapping reveals a striking coincidence in the positions of genomic regions associated with adaptive variation in body size in parallel clines of Drosophila melanogaster on different continents. Evolution 2003; 57(11):2653–2658.

    CrossRef  PubMed  CAS  Google Scholar 

  33. Orr HA, Betancourt AJ. Haldane’s sieve and adaptation from the standing genetic variation. Genetics 2001; 157(2):875–884.

    PubMed  CAS  Google Scholar 

  34. Vigouroux Y, McMullen M, Hittinger CT et al. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. PNAS 2002; 99(15):9650–9655.

    CrossRef  PubMed  CAS  Google Scholar 

  35. Payseur BA, Cutter AD, Nachman MW. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol Biol Evol 2002; 19(7):1143–1153.

    PubMed  CAS  Google Scholar 

  36. Kayser M, Brauer S, Stoneking M. A genome scan to detect candidate regions influenced by local natural selection in human populations. Mol Biol Evol 2003; 20(6):893–900.

    CrossRef  PubMed  CAS  Google Scholar 

  37. Schörl G, Schlötterer C. Patterns of microsatellite variability among X chromosomes and autosomes indicate a high frequency of beneficial mutations in nonAfrican D. simulans. Mol Biol Evol 2004.

    Google Scholar 

  38. Kauer M, Zangerl B, Dieringer D et al. Chromosomal patterns of microsatellite variability contrast sharply in African and nonAfrican populations of Drosophila melanogaster. Genetics 2002; 160:247–256.

    PubMed  CAS  Google Scholar 

  39. Glinka S, Ometto L, Mousset S et al. Demography and natural selection have shaped genetic variation in Drosophila melanogaster: A multi-locus approach. Genetics 2003; 165(3):1269–1278.

    PubMed  Google Scholar 

  40. Nair S, Williams JT, Brockman A et al. A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. Mol Biol Evol 2003; 20(9):1526–1536.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Schlötterer, C. (2006). Hitchhiking Mapping. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_10

Download citation

Publish with us

Policies and ethics