Skip to main content

Regulation of Paracellular Transport across Tight Junctions by the Actin Cytoskeleton

  • Chapter
Tight Junctions
  • 803 Accesses

Abstract

The epithelial lining of luminal organs such as the gastrointestinal and respiratory tract forms a regulated, selectively permeable barrier between luminal contents and the underlying tissue compartments. Paracellular permeability across epithelial and endothelial cells is in large part regulated by an apical intercellular junction also referred to as the tight junction (TJ). The tight junction and its subjacent adherens junction (AJ) constitute the apical junctional complex (AJC). The AJC is composed of a multiprotein complex, which affiliates with the underlying apical perijunctional F-actin ring. Such AJC association with the perijunctional F-actin ring is vital for maintaining its structure and function in health. Stimuli such as nutrients, internal signaling molecules and cytokines influence the apical F-actin organization and also modulate the AJC structure and paracellular permeability. Here we review some of the key stimuli that influence F-actin organization, AJC structure and paracellular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diamond JM. Twenty-first Bowditch lecture. The epithelial junction: Bridge, gate, and fence. Physiologist 1977; 20(1):10–18.

    PubMed  CAS  Google Scholar 

  2. van Meer G, Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 1986; 5(7):1455–1464.

    PubMed  Google Scholar 

  3. Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB J 1995; 9(10):910–918.

    PubMed  CAS  Google Scholar 

  4. Gumbiner BM. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 1996; 84(3):345–357.

    Article  PubMed  CAS  Google Scholar 

  5. Staehelin LA. Structure and function of intercellular junctions. Int Rev Cytol 1974; 39:191–283.

    PubMed  CAS  Google Scholar 

  6. Madara JL, Moore R, Carlson S. Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol 1987; 253(6 Pt 1):C854–861.

    PubMed  CAS  Google Scholar 

  7. Madara JL, Parkos C, Colgan S et al. The movement of solutes and cells across tight junctions. Ann NY Acad Sci 1992; 664:47–60.

    Article  PubMed  CAS  Google Scholar 

  8. Pitelka DR, Taggart BN. Mechanical tension induces lateral movement of intramembrane components of the tight junction: Studies on mouse mammary cells in culture. J Cell Biol 1983; 96(3):606–612.

    Article  PubMed  CAS  Google Scholar 

  9. Furuse M, Hirase T, Itoh M et al. Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123(6 Pt 2):1777–1788.

    Article  PubMed  CAS  Google Scholar 

  10. Furuse M, Itoh M, Hirase T et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127(6 Pt 1):1617–1626.

    Article  PubMed  CAS  Google Scholar 

  11. Fanning AS, Jameson BJ, Jesaitis LA et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273(45):29745–29753.

    Article  PubMed  CAS  Google Scholar 

  12. Liu Y, Nusrat A, Schnell FJ et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113 (Pt 13):2363–2374.

    PubMed  CAS  Google Scholar 

  13. Citi S, Cordenonsi M. Tight junction proteins. Biochim Biophys Acta 1998; 1448(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  14. Nusrat A, von Eichel-Streiber C, Turner JR et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 2001; 69(3):1329–1336.

    Article  PubMed  CAS  Google Scholar 

  15. Nusrat A, Parkos CA, Verkade P et al. Tight junctions are membrane microdomains. J Cell Sci 2000; 113 (Pt 10):1771–1781.

    PubMed  CAS  Google Scholar 

  16. Harhaj NS, Barber AJ, Antonetti DA. Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J Cell Physiol 2002; 193(3):349–364.

    Article  PubMed  CAS  Google Scholar 

  17. Wittchen ES, Haskins J, Stevenson BR. NZO-3 expression causes global changes to actin cytoskeleton in Madin-Darby canine kidney cells: Linking a tight junction protein to Rho GTPases. Mol Biol Cell 2003; 14(5):1757–1768.

    Article  PubMed  CAS  Google Scholar 

  18. van der Wouden JM, Maier O, van I SC et al. Membrane dynamics and the regulation of epithelial cell polarity. Int Rev Cytol 2003; 226:127–164.

    PubMed  Google Scholar 

  19. Meyer TN, Hunt J, Schwesinger C et al. Galpha12 regulates epithelial cell junctions through Src tyrosine kinases. Am J Physiol Cell Physiol 2003; 285(5):C1281–1293.

    PubMed  CAS  Google Scholar 

  20. Luton F, Klein S, Chauvin JP et al. EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement. Mol Biol Cell 2003.

    Google Scholar 

  21. Madara JL. Tight junction dynamics: Is paracellular transport regulated? Cell 1988; 53(4):497–498.

    Article  PubMed  CAS  Google Scholar 

  22. Madara JL, Pappenheimer JR. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol 1987; 100(2):149–164.

    PubMed  CAS  Google Scholar 

  23. Madara JL, Stafford J, Dharmsathaphorn K et al. Structural analysis of a human intestinal epithelial cell line. Gastroenterology 1987; 92(5 Pt 1):1133–1145.

    PubMed  CAS  Google Scholar 

  24. Turner JR, Madara JL. Physiological regulation of intestinal epithelial tight junctions as a consequence of Na(+)-coupled nutrient transport. Gastroenterology 1995; 109(4):1391–1396.

    Article  PubMed  CAS  Google Scholar 

  25. Hecht G, Pothoulakis C, LaMont JT et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 1988; 82(5):1516–1524.

    PubMed  CAS  Google Scholar 

  26. Yuhan R, Koutsouris A, Savkovic SD et al. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 1997; 113(6):1873–1882.

    Article  PubMed  CAS  Google Scholar 

  27. Zolotarevsky Y, Hecht G, Koutsouris A et al. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in vitro models of intestinal disease. Gastroenterology 2002; 123(1):163–172.

    Article  PubMed  CAS  Google Scholar 

  28. Edens HA, Levi BP, Jaye DL et al. Neutrophil transepithelial migration: Evidence for sequential, contact-dependent signaling events and enhanced paracellular permeability independent of transjunctional migration. J Immunol 2002; 169(1):476–486.

    PubMed  CAS  Google Scholar 

  29. Madara JL. Sodium-glucose cotransport and epithelial permeability. Gastroenterology 1994; 107(1):319–320.

    PubMed  CAS  Google Scholar 

  30. Pappenheimer JR. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J Membr Biol 1987; 100(2):137–148.

    PubMed  CAS  Google Scholar 

  31. Pappenheimer JR, Reiss KZ. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 1987; 100(2):123–136.

    PubMed  CAS  Google Scholar 

  32. Turner JR, Rill BK, Carlson SL et al. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 1997;273(4 Pt 1):C1378–1385.

    PubMed  CAS  Google Scholar 

  33. Turner JR, Black ED, Ward J et al. Transepithelial resistance can be regulated by the intestinal brush-border Na(+)/H(+) exchanger NHE3. Am J Physiol Cell Physiol 2000;279(6):C1918–1924.

    PubMed  CAS  Google Scholar 

  34. Hecht G, Pestic L, Nikcevic G et al. Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am J Physiol 1996;271(5 Pt 1):C1678–1684.

    PubMed  CAS  Google Scholar 

  35. Turner JR, Angle JM, Black ED et al. PKC-dependent regulation of transepithelial resistance: Roles of MLC and MLC kinase. Am J Physiol 1999;277(3 Pt 1):C554–562.

    PubMed  CAS  Google Scholar 

  36. Lum H, Malik AB. Regulation of vascular endothelial barrier function. Am J Physiol 1994;267(3 Pt 1):L223–241.

    PubMed  CAS  Google Scholar 

  37. van Nieuw Amerongen GP, Vermeer MA, van Hinsbergh VW. Role of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction. Arterioscler Thromb Vase Biol 2000;20(12):E127–133.

    Google Scholar 

  38. Ma TY, Nguyen D, Bui V et al. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol 1999;276(4 Pt 1):G965–974.

    PubMed  CAS  Google Scholar 

  39. Ma TY, Tran D, Hoa N et al. Mechanism of extracellular calcium regulation of intestinal epithelial tight junction permeability: Role of cytoskeletal involvement. Microsc Res Tech 2000;51(2):156–168.

    Article  PubMed  CAS  Google Scholar 

  40. Lowe PJ, Miyai K, Steinbach JH et al. Hormonal regulation of hepatocyte tight junctional permeability. Am J Physiol 1988;255(4 Pt 1):G454–461.

    PubMed  CAS  Google Scholar 

  41. Braga VM, Machesky LM, Hall A et al. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 1997;137(6):1421–1431.

    Article  PubMed  CAS  Google Scholar 

  42. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279(5350):509–514.

    Article  PubMed  CAS  Google Scholar 

  43. Hopkins AM, Walsh SV, Verkade P et al. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 2003;116 (Pt 4):725–742.

    Article  PubMed  CAS  Google Scholar 

  44. Nobes CD, Hall A. Rho, rac and cdc42 GTPases: Regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 1995;23(3):456–459.

    PubMed  CAS  Google Scholar 

  45. Nusrat A, Giry M, Turner JR et al. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci USA 1995;92(23):10629–10633.

    Article  PubMed  CAS  Google Scholar 

  46. Ridley AJ, Hall A. Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho. Cold Spring Harb Symp Quant Biol 1992;57:661–671.

    PubMed  CAS  Google Scholar 

  47. Chuang TH, Xu X, Knaus UG et al. GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein. J Biol Chem 1993;268(2):775–778.

    PubMed  CAS  Google Scholar 

  48. Fukumoto Y, Kaibuchi K, Hori Y et al. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene 1990;5(9):1321–1328.

    PubMed  CAS  Google Scholar 

  49. Hall A. G proteins and small GTPases: Distant relatives keep in touch. Science 1998;280(5372):2074–2075.

    Article  PubMed  CAS  Google Scholar 

  50. Aspenstrom P. The Rho GTPases have multiple effects on the actin cytoskeleton. Exp Cell Res 1999;246(1):20–25.

    Article  PubMed  CAS  Google Scholar 

  51. Hall A. The cellular functions of small GTP-binding proteins. Science 1990;249(4969):635–640.

    Article  PubMed  CAS  Google Scholar 

  52. Walsh SV, Hopkins AM, Chen J et al. Rho kinase regulates tight junction function and is necessary for tight junction assembly in polarized intestinal epithelia. Gastroenterology 2001;121(3):566–579.

    Article  PubMed  CAS  Google Scholar 

  53. Jou TS, Schneeberger EE, Nelson WJ. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 1998;142(1):101–115.

    Article  PubMed  CAS  Google Scholar 

  54. Benais-Pont G, Punn A, Flores-Maldonado C et al. Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 2003;160(5):729–740.

    Article  PubMed  CAS  Google Scholar 

  55. Rojas R, Ruiz WG, Leung SM et al. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2001;12(8):2257–2274.

    PubMed  CAS  Google Scholar 

  56. Wojciak-Stothard B, Potempa S, Eichholtz T et al. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 2001;H4 (Pt 7):1343–1355.

    Google Scholar 

  57. Segain JP, Raingeard de la Bletiere D, Sauzeau V et al. Rho kinase blockade prevents inflammation via nuclear factor kappa B inhibition: Evidence in Crohn’s disease and experimental colitis. Gastroenterology 2003;124(5):1180–1187.

    Article  PubMed  CAS  Google Scholar 

  58. Hofman P, Flatau G, Selva E et al. Escherichia coli cytotoxic necrotizing factor 1 effaces microvilli and decreases transmigration of polymorphonuclear leukocytes in intestinal T84 epithelial cell monolayers. Infect Immun 1998;66(6):2494–2500.

    PubMed  CAS  Google Scholar 

  59. Gerhard R, Schmidt G, Hofmann F et al. Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco2 cells. Infect Immun 1998; 66(11):5125–5131.

    PubMed  CAS  Google Scholar 

  60. Jou TS, Leung SM, Fung LM et al. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol Biol Cell 2000; 11(1):287–304.

    PubMed  CAS  Google Scholar 

  61. Leung SM, Rojas R, Maples C et al. Modulation of endocytic traffic in polarized Madin-Darby canine kidney cells by the small GTPase RhoA. Mol Biol Cell 1999;10(12):4369–4384.

    PubMed  CAS  Google Scholar 

  62. Oshima T, Laroux FS, Coe LL et al. Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res 2001;61(1):130–143.

    Article  PubMed  CAS  Google Scholar 

  63. Youakim A, Ahdieh M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 1999;276(5 Pt 1):G1279–1288.

    PubMed  CAS  Google Scholar 

  64. Ahdieh M, Vandenbos T, Youakim A. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-gamma. Am J Physiol Cell Physiol 2001;281(6):C2029–2038.

    PubMed  CAS  Google Scholar 

  65. Duffy HS, John GR, Lee SC et al. Reciprocal regulation of the junctional proteins claudin-1 and connexin43 by interleukin-lbeta in primary human fetal astrocytes. J Neurosci 2000;20(23):RC114.

    PubMed  CAS  Google Scholar 

  66. Madara JL, Stafford J. Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1989;83(2):724–727.

    PubMed  CAS  Google Scholar 

  67. Adams RB, Planchon SM, Roche JK. IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding. J Immunol 1993;150(6):2356–2363.

    PubMed  CAS  Google Scholar 

  68. Sugi K, Musch MW, Field M et al. Inhibition of Na+,K+-ATPase by interferon gamma down-regulates intestinal epithelial transport and barrier function. Gastroenterology 2001;120(6):1393–1403.

    Article  PubMed  CAS  Google Scholar 

  69. Tsukamoto T, Nigam SK. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am J Physiol 1999;276(5 Pt 2):F737–750.

    PubMed  CAS  Google Scholar 

  70. Bruewer M, Luegering A, Kucharzik T et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 2003;171(11):6164–6172.

    PubMed  CAS  Google Scholar 

  71. Itoh M, Furuse M, Morita K et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999;147(6):1351–1363.

    Article  PubMed  CAS  Google Scholar 

  72. Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999;274(49):35179–35185.

    Article  PubMed  CAS  Google Scholar 

  73. Ivanov AI, Nusrat A, Parkos CA. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 2004;15(1):176–188.

    Article  PubMed  CAS  Google Scholar 

  74. Coyne CB, Vanhook MK, Gambling TM et al. Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 2002;13(9):3218–3234.

    Article  PubMed  CAS  Google Scholar 

  75. Fish SM, Proujansky R, Reenstra WW. Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function. Gut 1999;45(2):191–198.

    Article  PubMed  CAS  Google Scholar 

  76. Planchon SM, Martins CA, Guerrant RL et al. Regulation of intestinal epithelial barrier function by TGF-beta 1. Evidence for its role in abrogating the effect of a T cell cytokine. J Immunol 1994;153(12):5730–5739.

    PubMed  CAS  Google Scholar 

  77. Madsen KL, Lewis SA, Tavernini MM et al. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997;113(1):151–159.

    Article  PubMed  CAS  Google Scholar 

  78. Tsukada Y, Nakamura T, Iimura M et al. Cytokine profile in colonic mucosa of ulcerative colitis correlates with disease activity and response to granulocytapheresis. Am J Gastroenterol 2002;97(11):2820–2828.

    Article  PubMed  CAS  Google Scholar 

  79. Irvine EJ, Marshall JK. Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk. Gastroenterology 2000;119(6):1740–1744.

    Article  PubMed  CAS  Google Scholar 

  80. Soderholm JD, Olaison G, Lindberg E et al. Different intestinal permeability patterns in relatives and spouses of patients with Crohn’s disease: An inherited defect in mucosal defence? Gut 1999;44(1):96–100.

    Article  PubMed  CAS  Google Scholar 

  81. Kucharzik T, Walsh SV, Chen J et al. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 2001;159(6):2001–2009.

    PubMed  CAS  Google Scholar 

  82. Gassier N, Rohr C, Schneider A et al. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol 2001;281(1):G216–228.

    Google Scholar 

  83. Peralta Soler A, Mullin JM, Knudsen KA et al. Tissue remodeling during tumor necrosis factor-induced apoptosis in LLC-PK1 renal epithelial cells. Am J Physiol 1996;270(5 Pt 2):F869–879.

    PubMed  CAS  Google Scholar 

  84. Schmitz H, Fromm M, Bentzel CJ et al. Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J Cell Sci 1999;112 (Pt 1):137–146.

    PubMed  CAS  Google Scholar 

  85. Poritz LS, Garver KI, Tilberg AF et al. Tumor necrosis factor alpha disrupts tight junction assembly(1,2). J Surg Res 2004;116(1):14–18.

    Article  PubMed  CAS  Google Scholar 

  86. Colgan SP, Parkos CA, Matthews JB et al. Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells. Am J Physiol 1994;267(2 Pt 1):C402–410.

    PubMed  CAS  Google Scholar 

  87. Petrache I, Verin AD, Crow MT et al. Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2001;280(6):L1168–1178.

    PubMed  CAS  Google Scholar 

  88. Nusrat A, Parkos CA, Bacarra AE et al. Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J Clin Invest 1994;93(5):2056–2065.

    Article  PubMed  CAS  Google Scholar 

  89. Pasdar M, Li Z, Marreli M et al. Inhibition of junction assembly in cultured epithelial cells by hepatocyte growth factor/scatter factor is concomitant with increased stability and altered phosphorylation of the soluble junctional molecules. Cell Growth Differ 1997;8(4):451–462.

    PubMed  CAS  Google Scholar 

  90. Balkovetz DF, Sambandam V. Dynamics of E-cadherin and gamma-catenin complexes during dedifferentiation of polarized MDCK cells. Kidney Int 1999;56(3):910–921.

    Article  PubMed  CAS  Google Scholar 

  91. Howe K, Gauldie J, McKay DM. TGF-beta effects on epithelial ion transport and barrier: Reduced Cl-secretion blocked by a p38 MAPK inhibitor. Am J Physiol Cell Physiol 2002;283(6):C1667–1674.

    PubMed  CAS  Google Scholar 

  92. Di Leo V, Yang PC, Berin MC et al. Factors regulating the effect of IL-4 on intestinal epithelial barrier function. Int Arch Allergy Immunol 2002;129(3):219–227.

    Article  PubMed  CAS  Google Scholar 

  93. Woo PL, Cha HH, Singer KL et al. Antagonistic regulation of tight junction dynamics by glucocorticoids and transforming growth factor-beta in mouse mammary epithelial cells. J Biol Chem 1996;271(1):404–412.

    Article  PubMed  CAS  Google Scholar 

  94. Guan Y, Woo PL, Rubenstein NM et al. Transforming growth factor-alpha abrogates the glucocorticoid stimulation of tight junction formation and reverses the steroid-induced down-regulation of fascin in rat mammary epithelial tumor cells by a Ras-dependent pathway. Exp Cell Res 2002;273(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  95. Rubenstein NM, Guan Y, Woo PL et al. Glucocorticoid down-regulation of RhoA is required for the steroid-induced organization of the junctional complex and tight junction formation in rat mammary epithelial tumor cells. J Biol Chem 2003;278(12):10353–10360.

    Article  PubMed  CAS  Google Scholar 

  96. Van Itallie CM, Balda MS, Anderson JM. Epidermal growth factor induces tyrosine phosphorylation and reorganization of the tight junction protein ZO-1 in A431 cells. J Cell Sci 1995;108 (Pt 4):1735–1742.

    PubMed  Google Scholar 

  97. Bruewer M, Hopkins AM, Hobert ME et al. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am J Physiol Cell Physiol 2004;287(2):C327–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bruewer, M., Nusrat, A. (2006). Regulation of Paracellular Transport across Tight Junctions by the Actin Cytoskeleton. In: Tight Junctions. Springer, Boston, MA. https://doi.org/10.1007/0-387-36673-3_10

Download citation

Publish with us

Policies and ethics