Skip to main content
  • 1203 Accesses

Summary and Conclusions

The practice of PV has experienced explosive growth in recent years and, with it, many questions regarding the efficacy of the procedure and its optimal practice. Percutaneous vertebroplasty functions primarily to stabilize fractures, thus preventing pain and providing a stable environment for healing. The amount of cement needed to affect stabilization is unknown, but it is probably 4 to 6mL rather than the volume needed to fill the vertebral body completely (>10 mL), as previously thought necessary. Altering the cement composition by adding antibiotics, opacifying agents, and more monomer alters the material properties of the cement, but with the availability of cements approved by the Conformitè Europèene or the FDA, such alterations are of more academic than clinical interest. The primary concerns relative to cement selection are whether or not the cement can be injected easily and visualized properly under fluoroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alleyne CH, Jr, Rodts GE, Jr, Haid RW. Corpectomy and stabilization with methylmethacrylate in patients with metastatic disease of the spine: a technical note. J Spinal Disord 1995; 8(6):439–443.

    PubMed  Google Scholar 

  2. Cortet B, Cotten A, Deprez X, et al. [Value of vertebroplasty combined with surgical decompression in the treatment of aggressive spinal angioma. Apropos of 3 cases.] Rev Rhum Ed Fr 1994; 61(1):16–22.

    PubMed  CAS  Google Scholar 

  3. Cybulski GR. Methods of surgical stabilization for metastatic disease of the spine. Neurosurgery 1989; 25(2):240–252.

    PubMed  CAS  Google Scholar 

  4. Harrington KD. Anterior decompression and stabilization of the spine as a treatment for vertebral collapse and spinal cord compression from metastatic malignancy. Clin Orthop 1988; 233:177–197.

    PubMed  Google Scholar 

  5. Harrington KD, Sim FH, Enis JE, et al. Methylmethacrylate as an adjunct in internal fixation of pathological fractures. Experience with three hundred and seventy-five cases. J Bone Joint Surg 1976; 58A(8):1047–1055.

    Google Scholar 

  6. Mavian GZ, Okulski CJ. Double fixation of metastatic lesions of the lumbar and cervical vertebral bodies utilizing methylmethacrylate compound: report of a case and review of a series of cases. J Am Osteopath Assoc 1986; 86(3):153–157.

    PubMed  CAS  Google Scholar 

  7. O’Donnell RJ, Springfield DS, Motwani HK, et al. Recurrence of giant-cell tumors of the long bones after curettage and packing with cement. J Bone Joint Surg 1994; 76A(12):1827–1833.

    Google Scholar 

  8. Persson BM, Ekelund L, Lovdahl R, et al. Favourable results of acrylic cementation for giant cell tumors. Acta Orthop Scand 1984; 55(2):209–214.

    PubMed  CAS  Google Scholar 

  9. Sundaresan N, Galicich JH, Lane JM, et al. Treatment of neoplastic epidural cord compression by vertebral body resection and stabilization. J Neurosurg 1985; 63(5):676–684.

    PubMed  CAS  Google Scholar 

  10. Knight G. Paraspinal acrylic inlays in the treatment of cervical and lumbar spondylosis and other conditions. Lancet 1959; 2:147–149.

    PubMed  CAS  Google Scholar 

  11. Galibert P, Deramond H, Rosat P, et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty.] Neurochirurgie 1987; 33(2):166–168.

    PubMed  CAS  Google Scholar 

  12. Lapras C, Mottolese C, Deruty R, et al. [Percutaneous injection of methylmethacrylate in osteoporosis and severe vertebral osteolysis (Galibert’s technic).] Ann Chir 1989; 43(5):371–376.

    PubMed  CAS  Google Scholar 

  13. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethyl-methacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol 1997; 18(10):1897–1904.

    PubMed  CAS  Google Scholar 

  14. Cyteval C, Sarrabere MPB, Roux JO, et al. Acute osteoporotic vertebral collapse: open study on percutaneous injection of acrylic surgical cement in 20 patients. Am J Roentgenol 1999; 173(6):1685–1690.

    CAS  Google Scholar 

  15. McGraw JK, Lippert JA, Minkus KD, et al. Prospective evaluation of pain relief in 100 patients undergoing percutaneous vertebroplasty: results and follow-up. J Vasc Intervent Radiol 2002; 13(9 Pt 1):883–886.

    Google Scholar 

  16. Evans AJ, Jensen ME, Kip KE, et al. Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty—retrospective report of 245 cases. Radiology 2003; 226(2):366–372.

    PubMed  Google Scholar 

  17. Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology 2000; 39:1410–1414.

    PubMed  CAS  Google Scholar 

  18. Peh WCG, Gilula LA, Peck DD. Percutaneous vertebroplasty for severe osteoporotic vertebral body compression fractures. Radiology 2002; 223(1):121–126.

    PubMed  Google Scholar 

  19. Peh WCG, Gelbart MS, Gilula LA, et al. Percutaneous vertebroplasty: treatment of painful vertebral compression fractures with intraosseous vacuum phenomena. Am J Roentgenol 2003; 180(5):1411–1417.

    Google Scholar 

  20. Weill A, Chiras J, Simon JM, et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996; 199(1):241–247.

    PubMed  CAS  Google Scholar 

  21. Cotten A, Duquesnoy B. Vertebroplasty: current data and future potential. Rev Rhum Engl Ed 1997; 64(11):645–649.

    PubMed  CAS  Google Scholar 

  22. Alvarez L, Perez-Higueras A, Quinones D, et al. Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life. Eur Spine J 2003; 12(4):356–360.

    PubMed  CAS  Google Scholar 

  23. Fourney DR, Schomer DF, Nader R, et al. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 2003; 98(Suppl 1):21–30.

    PubMed  Google Scholar 

  24. Bostrom MPG, Lane JM. Future directions. Augmentation of osteoporotic vertebral bodies. Spine 1997; 22(Suppl 24):38S–42S.

    PubMed  CAS  Google Scholar 

  25. Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 1998; 36(3):533–546.

    PubMed  CAS  Google Scholar 

  26. Srikumaran U, Wong W, Belkoff SM, McCarthy EF: Histopathologic analysis of human vertebral bodies after kyphoplasty. J Bone Joint Surg 2005; 87(8):1838–1843.

    PubMed  Google Scholar 

  27. Togawa D, Bauer TW, Lieberman IH, et al. Histologic evaluation of human vertebral bodies after vertebral augmentation with polymethyl methacrylate. Spine 2003; 28(14):1521–1527.

    PubMed  Google Scholar 

  28. Verlaan JJ, Oner FC, Slootweg PJ, et al. Histologic changes after vertebroplasty. J Bone Joint Surg 2004; 86A(6):1230–1238.

    Google Scholar 

  29. Lewis G. Properties of acrylic bone cement: state of the art review. J Biomed Mater Res 1997; 38(2):155–182.

    PubMed  CAS  Google Scholar 

  30. Hasenwinkel JM, Lautenschlager EP, Wixson RL, et al. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties. J Biomed Mater Res 1999; 47(1):36–45.

    PubMed  CAS  Google Scholar 

  31. Leeson MC, Lippitt SB. Thermal aspects of the use of polymethyl-methacrylate in large metaphyseal defects in bone. A clinical review and laboratory study. Clin Orthop 1993; 295:239–245.

    PubMed  Google Scholar 

  32. Mjoberg B, Pettersson H, Rosenqvist R, et al. Bone cement, thermal injury and the radiolucent zone. Acta Orthop Scand 1984; 55(6):597–600.

    PubMed  CAS  Google Scholar 

  33. Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 1984; 18(3):261–268.

    PubMed  CAS  Google Scholar 

  34. Rouiller C, Majno G. Morphologische und chemische Untersuchung an Knochen nach Hitzeeinwirkung. Beitr Pathol Anat Allg Pathol 1953; 113:100–120.

    CAS  Google Scholar 

  35. Li S, Chien S, Branemark PI. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res 1999; 17(6):891–899.

    PubMed  CAS  Google Scholar 

  36. Jefferiss CD, Lee AJC, Ling RSM. Thermal aspects of self-curing polymethylmethacrylate. J Bone Joint Surg 1975; 57B(4):511–518.

    CAS  Google Scholar 

  37. De Vrind HH, Wondergem J, Haveman J. Hyperthermia-induced damage to rat sciatic nerve assessed in vivo with functional methods and with electrophysiology. J Neurosci Methods 1992; 45(3):165–174.

    PubMed  Google Scholar 

  38. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999; 25(Suppl 2):17S–21S.

    PubMed  CAS  Google Scholar 

  39. Belkoff SM, Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine 2003; 28(14):1555–1559.

    PubMed  Google Scholar 

  40. Verlaan JJ, Oner FC, Verbout AJ, et al. Temperature elevation after vertebroplasty with polymethylmethacrylate in the goat spine. J Biomed Mater Res 2003; 67B(1):581–585.

    CAS  Google Scholar 

  41. Dahl OE, Garvik LJ, Lyberg T. Toxic effects of methylmethacrylate monomer on leukocytes and endothelial cells in vitro [published erratum appears in Acta Orthop Scand 1995 Aug; 66(4):387]. Acta Orthop Scand 1994; 65(2):147–153.

    PubMed  CAS  Google Scholar 

  42. Svartling N, Pfaffli P, Tarkkanen L. Blood levels and half-life of methylmethacrylate after tourniquet release during knee arthroplasty. Arch Orthop Trauma Surg 1986; 105(1):36–39.

    PubMed  CAS  Google Scholar 

  43. Wenda K, Scheuermann H, Weitzel E, et al. Pharmacokinetics of methylmethacrylate monomer during total hip replacement in man. Arch Orthop Trauma Surg 1988; 107(5):316–321.

    PubMed  CAS  Google Scholar 

  44. San Millan Ruiz D, Burkhardt K, Jean B, et al. Pathology findings with acrylic implants. Bone 1999; 25(Suppl 2):85S–90S.

    PubMed  CAS  Google Scholar 

  45. Belkoff SM, Deramond H, Jasper LE, et al. Biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Presented at the 11th Interdisciplinary Research Conference on Biomaterials (Groupe de Recherches Interdisciplinaire sur les Biomateriaux Osteo-articulaires Injectables, GRIBOI), March 8, 2001.

    Google Scholar 

  46. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 2000; 25(9):1061–1064.

    PubMed  CAS  Google Scholar 

  47. Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 1999; 24(17):1772–1776.

    PubMed  CAS  Google Scholar 

  48. Garfin SR, Blair B, Eismont FJ, et al. Thoracic and upper lumbar spine injuries. In Skeletal Trauma: Fractures, Dislocations, Ligamentous Injuries, 2nd Ed. BD Browner, JB Jupiter, AM Levine, et al (eds). Philadelphia: WB Saunders Co, 1998:947–1034.

    Google Scholar 

  49. Mow VC, Hayes WC. Basic Orthopaedic Biomechanics. New York: Raven Press, 1991.

    Google Scholar 

  50. WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. WHO Tech Rep Ser 1994; 843:1–129.

    Google Scholar 

  51. Ross PD, Davis JW, Epstein RS, et al. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 1991; 114(11):919–923.

    PubMed  CAS  Google Scholar 

  52. Eastell R, Cedel SL, Wahner HW, et al. Classification of vertebral fractures. J Bone Miner Res 1991; 6(3):207–215.

    PubMed  CAS  Google Scholar 

  53. Riggs BL, Melton LJ, III. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 1995; 17(Suppl 2):505S–511S.

    PubMed  CAS  Google Scholar 

  54. Lyritis GP, Mayasis B, Tsakalakos N, et al. The natural history of the osteoporotic vertebral fracture. Clin Rheumatol 1989; 8(Suppl 2):66–69.

    PubMed  Google Scholar 

  55. Gaughen JR, Jr, Jensen ME, Schweickert PA, et al. The therapeutic benefit of repeat percutaneous vertebroplasty at previously treated vertebral levels. Am J Neuroradiol 2002; 23(10):1657–1661.

    PubMed  Google Scholar 

  56. Gilula L. Is insufficient use of polymethylmethacrylate a cause for vertebroplasty failure necessitating repeat vertebroplasty [letter]? Am J Neuroradiol 2003; 24(10):2120–2121.

    PubMed  Google Scholar 

  57. Cotten A, Boutry N, Cortet B, et al. Percutaneous vertebroplasty: state of the art. RadioGraphics 1998; 18(2):311–323.

    PubMed  CAS  Google Scholar 

  58. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine 2003; 28(14):1549–1554.

    PubMed  Google Scholar 

  59. Barr JD, Barr MS, Lemley TJ, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 2000; 25(8):923–928.

    PubMed  CAS  Google Scholar 

  60. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 1996; 200(2):525–530.

    PubMed  CAS  Google Scholar 

  61. Kallmes DF, Jensen ME, Marx WF. Response to letter “Is insufficient use of polymethylmethacrylate a cause for vertebroplasty failure necessitating repeat vertebroplasty?” [letter]. Am J Neuroradiol 2003;24(10):2121–2122.

    Google Scholar 

  62. Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty: the effect of cement volume on mechanical behavior. Spine 2001;26(14):1537–1541.

    PubMed  CAS  Google Scholar 

  63. Liebschner MAK, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 2001;26(14):1547–1554.

    PubMed  CAS  Google Scholar 

  64. Terjesen T, Apalset K. The influence of different degrees of stiffness of fixation plates on experimental bone healing. J Orthop Res 1988;6(2):293–299.

    PubMed  CAS  Google Scholar 

  65. Mathis JM. Percutaneous vertebroplasty: complication avoidance and technique optimization. Am J Neuroradiol 2003;24(8):1697–1706.

    PubMed  Google Scholar 

  66. Baroud G, Nemes J, Heini P, et al. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 2003;12(4):421–426.

    PubMed  CAS  Google Scholar 

  67. Ananthakrishnan D, Berven S, Deviren V, et al. The effect on anterior column loading due to different vertebral augmentation techniques. Clin Biomech (Bristol, Avon) 2005;20(1):25–31.

    Google Scholar 

  68. Higgins KB, Harten RD, Langrana NA, et al. Biomechanical effects of unipedicular vertebroplasty on intact vertebrae. Spine 2003;28(14):1540–1547;disc, 1548.

    PubMed  Google Scholar 

  69. Dean JR, Ison KT, Gishen P. The strengthening effect of percutaneous vertebroplasty. Clin Radiol 2000;55(6):471–476.

    PubMed  CAS  Google Scholar 

  70. Lyles KW, Gold DT, Shipp KM, et al. Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med 1993;94(6):595–601.

    PubMed  CAS  Google Scholar 

  71. Silverman SL. The clinical consequences of vertebral compression fracture. Bone 1992;13(Suppl 2):S27–S31.

    PubMed  Google Scholar 

  72. Schlaich C, Minne HW, Bruckner T, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int 1998;8(3):261–267.

    PubMed  CAS  Google Scholar 

  73. Leech JA, Dulberg C, Kellie S, et al. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis 1990;141(1):68–71.

    PubMed  CAS  Google Scholar 

  74. Leidig-Bruckner G, Minne HW, Schlaich C, et al. Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res 1997;12(4):663–675.

    PubMed  CAS  Google Scholar 

  75. Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 2001;26(2):151–156.

    PubMed  CAS  Google Scholar 

  76. Belkoff SM, Mathis JM, Deramond H, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with kyphoplasty. Am J Neuroradiol 2001;22 (June/July):1212–1216.

    PubMed  CAS  Google Scholar 

  77. Belkoff SM, Mathis JM, Jasper LE, et al. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 2001;26(14):1542–1546.

    PubMed  CAS  Google Scholar 

  78. Wilson DR, Myers ER, Mathis JM, et al. Effect of augmentation on the mechanics of vertebral wedge fractures. Spine 2000;25(2):158–165.

    PubMed  CAS  Google Scholar 

  79. Hiwatashi A, Moritani T, Numaguchi Y, et al. Increase in vertebral body height after vertebroplasty. Am J Neuroradiol 2003;24(2):185–189.

    PubMed  Google Scholar 

  80. Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine 2001;26(14):1631–1638.

    PubMed  CAS  Google Scholar 

  81. Phillips FM, Todd WF, Lieberman I, et al. An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphoplasty. Spine 2002;27(19):2173–2178.

    PubMed  Google Scholar 

  82. Baroud G, Bohner M, Heini P, et al. Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 2004;14(4):487–504.

    PubMed  CAS  Google Scholar 

  83. Tomita S, Molloy S, Abe M, et al. Ex vivo measurement of intravertebral pressure during vertebroplasty. Spine 2004;29(7):723–725.

    PubMed  Google Scholar 

  84. Kim SH, Kang HS, Choi JA, et al. Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiol 2004;45(4):440–445.

    PubMed  CAS  Google Scholar 

  85. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 2003;226(1):119–124.

    PubMed  Google Scholar 

  86. Magerl F, Aebi M, Gertzbein SD, et al. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994;3(4):184–201.

    PubMed  CAS  Google Scholar 

  87. Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol 2004;25(2):175–180.

    PubMed  Google Scholar 

  88. Berlemann U, Ferguson SJ, Nolte LP, et al. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg 2002;84B(5):748–752.

    Google Scholar 

  89. Mathis JM, Deramond H, Belkoff SM. Percutaneous Vertebroplasty. New York: Springer, 2002.

    Google Scholar 

  90. Deramond H, Depriester C, Toussaint P, et al. Percutaneous vertebroplasty. Semin Musculoskel Radiol 1997;1(2):285–295.

    Google Scholar 

  91. Belkoff SM, Sanders JC. The effect of the monomer-to-powder ratio on the material properties of acrylic bone cement. J Biomed Mater Res 2002;63(4):396–399.

    PubMed  CAS  Google Scholar 

  92. Jasper LE, Deramond H, Mathis JM, et al. The effect of monomer-topowder ratio on the material properties of Cranioplastic. Bone 1999;25(Suppl 2):27S–29S.

    PubMed  CAS  Google Scholar 

  93. Jasper LE, Deramond H, Mathis JM, et al. Material properties of various cements for use with vertebroplasty. J Mater Sci Mater Med 2002;13:1–5.

    PubMed  CAS  Google Scholar 

  94. Svartling N, Pfaffli P, Tarkkanen L. Methylmethacrylate blood levels in patients with femoral neck fracture. Arch Orthop Trauma Surg 1985;104(4):242–246.

    PubMed  CAS  Google Scholar 

  95. Jasper L, Deramond H, Mathis JM, et al. Evaluation of PMMA cements altered for use in vertebroplasty. Presented at the 10th Interdisciplinary Research Conference on Injectible Biomaterials, Amiens (France), March 14–15, 2000.

    Google Scholar 

  96. Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty. Am J Neuroradiol 1999;20(3):375–377.

    PubMed  CAS  Google Scholar 

  97. Wilkes RA, MacKinnon JG, Thomas WG. Neurological deterioration after cement injection into a vertebral body. J Bone Joint Surg 1994;76B(1):155.

    Google Scholar 

  98. Perrin C, Jullien V, Padovani B, et al. [Percutaneous vertebroplasty complicated by pulmonary embolus of acrylic cement]. Rev Mal Respir 1999;16(2):215–217.

    PubMed  CAS  Google Scholar 

  99. Saha S, Pal S. Mechanical properties of bone cement: a review. J Biomed Mater Res 1984;18(4):435–462.

    PubMed  CAS  Google Scholar 

  100. Riser WH. Introduction. Vet Pathol 1975;12:235–238.

    Google Scholar 

  101. American Society for Testing and Materials. Standard specification for acrylic bone cement. In Annual Book of ASTM Standards. West Conshohocken, PA: American Society for Testing and Materials, 1997:47–53.

    Google Scholar 

  102. Singer K, Edmondston S, Day R, et al. Prediction of thoracic and lumbar vertebral body compressive strength: correlations with bone mineral density and vertebral region. Bone 1995;17(2):167–174.

    PubMed  CAS  Google Scholar 

  103. Schildhauer TA, Bennett AP, Wright TM, et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 1999;17(1):67–72.

    PubMed  CAS  Google Scholar 

  104. Mermelstein LE, McLain RF, Yerby SA. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. A biomechanical study. Spine 1998;23(6):664–670.

    PubMed  CAS  Google Scholar 

  105. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999;24(15):1521–1526.

    PubMed  CAS  Google Scholar 

  106. Kim SB, Kim YJ, Yoon TL, et al. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials 2004;25(26):5715–5723.

    PubMed  CAS  Google Scholar 

  107. Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine 2002;27(12):1297–1302.

    PubMed  Google Scholar 

  108. Zhao F, Lu WW, Luk KDK, et al. Surface treatment of injectable strontiumcontaining bioactive bone cement for vertebroplasty. J Biomed Mater Res B Appl Biomater 2004;69(1):79–86.

    PubMed  CAS  Google Scholar 

  109. Mendez JA, Fernandez M, Gonzalez-Corchon A, et al. Injectable selfcuring bioactive acrylic-glass composites charged with specific antiinflammatory/analgesic agent. Biomaterials 2004;25(12):2381–2392.

    PubMed  CAS  Google Scholar 

  110. Fujita H, Nakamura T, Tamura J, et al. Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. J Biomed Mater Res 1998;40(1):145–152.

    PubMed  CAS  Google Scholar 

  111. Tomita S, Kin A, Yazu M, et al. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci 2003;8:192–197.

    PubMed  CAS  Google Scholar 

  112. Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials 2004;25(11):2197–2203.

    PubMed  CAS  Google Scholar 

  113. Gbureck U, Barralet JE, Spatz K, et al. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials 2004;25(11):2187–2195.

    PubMed  CAS  Google Scholar 

  114. Bernards CM, Chapman J, Mirza S. Lethality of embolized norian bone cement varies with the time between mixing and embolization [abstr]. Trans Orthop Res Soc 2005;29:254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Belkoff, S.M. (2006). Biomechanical Considerations. In: Mathis, J.M., Deramond, H., Belkoff, S.M. (eds) Percutaneous Vertebroplasty and Kyphoplasty. Springer, New York, NY . https://doi.org/10.1007/0-387-36083-2_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-36083-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-29078-2

  • Online ISBN: 978-0-387-36083-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics