Skip to main content

Papillomavirus Infections and Cancerogenesis of Squamous Cell and Basal Cell Carcinomas

  • Chapter
Molecular Mechanisms of Basal Cell and Squamous Cell Carcinomas

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 756 Accesses

Abstract

Human papillomaviruses (HPVs) are a large group of infectious agents that induce various lesions of skin and mucosae. The carcinogenic role of HPV types 16 and 18, mediated by inactivation of the tumor suppressor proteins p53 and pRb by the viral oncoproteins E6 and E7, is established for cervical cancer. For cutaneous carcinogenesis, a causative role of HPVs is so far recognized only for squamous cell carcinomas (SCCs) in the rare heriditary skin disease epidermodysplasia verruciformis (EV). In both cervical cancer and SCCs of EV patients HPV DNA persists in high copy numbers, and the viral oncogenes E6 and E7 are transcribed at high levels. The detection of HPV DNA in SCCs and their precursors in individuals without EV history raises the question of the oncogenic role of HPVs in cutaneous tumors of the general population and particularly in the situation of iatrogenic immunosuppression. Polymerase chain reaction procedures revealed that HPVs of all subgroups are ubiquitous agents. But in the nonEV population, HPV concentration in both skin tumors and premalignant lesions is extremely low with only 1 HPV DNA copy on 20 to 5000 host cells. A number of in vitro observations suggest a transforming potential of HPV- encoded proteins or their interaction with cell cycle control in ultraviolet radiation-damaged skin. The chapter presents a critical analysis of these data with regard to their clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfister H, Fuchs PG. Anatomy, taxonomy and evolution of papillomaviruses. Intervirology 1994; 37:143–149.

    PubMed  CAS  Google Scholar 

  2. Pfister H. Human papillomaviruses and skin cancer. Semin Cancer Biol 1992; 3:263–271.

    PubMed  CAS  Google Scholar 

  3. zur Hausen H. Papillomaviruses in human cancers. Proc Assoc Am Physicians 1999; 111:581–587.

    Article  PubMed  Google Scholar 

  4. Sanchez-Lanier M, Triplett C, Campion M. Possible role for human papillomavirus 16 in squamous cell carcinoma of the finger. J Med Virol 1994; 44:369–378.

    Article  PubMed  CAS  Google Scholar 

  5. Jablonska S, Majewski S. Epidermodysplasia verruciformis: Immunological and clinical aspects. Curr Top Microbiol Immunol 1994; 186:157–175.

    PubMed  CAS  Google Scholar 

  6. Orth G. Epidermodysplasia verruciformis. In: Salzman HP, Howley PM, eds. The papillomaviruses. New York: Plenum Press, 1987:199–243.

    Google Scholar 

  7. Ramoz N, Taïeb A, Rueda LA et al. Evidence for a nonallelic heterogeneity of epidermodysplasia verruciformis with two susceptibility loci mapped to chromosome regions 2p21–p24 and 17q25. J Invest Dermatol 2000; 114:1148–1153.

    Article  PubMed  CAS  Google Scholar 

  8. Ramoz N, Rueda LA, Bouadjar B et al. A susceptibility locus for epidermodysplasia verruciformis, an abnormal predisposition to infection with the oncogenic human papillomavirus type 5, maps to chromosome 17qter in a region containing a psoriasis locus. J Invest Dermatol 1999; 112:259–263.

    Article  PubMed  CAS  Google Scholar 

  9. Majewski S, Jablonska S, Favre M et al. Papillomavirus and autoimmunity in psoriasis. Immunol Today 1999; 20:475–476.

    Article  PubMed  CAS  Google Scholar 

  10. Rous P, Béard JW. The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Exp Med 1935; 62:523–548.

    Article  Google Scholar 

  11. Wettstein FO, Stevens JG. Shope papillomavirus DNA is extensively methylated in nonvirus-producing neoplasms. Virology 1983; 126:493–504.

    Article  PubMed  CAS  Google Scholar 

  12. Berkhout RJ, Tieben LM, Smits HL et al. Nested PCR approach for detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. J Clin Microbiol 1995; 33:690–695.

    PubMed  CAS  Google Scholar 

  13. Bens G, Wieland U, Hofmann A et al. Detection of new human papillomavirus sequences in skin lesions of a renal transplant recipient and characterization of one complete genome related to epidermodysplasia verruciformis-associated types. J Gen Virol 1998; 79:779–787.

    PubMed  CAS  Google Scholar 

  14. Shamanin V, zur Hausen H, Lavergne D et al. Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J Natl Cancer Inst 1996; 88:802–811.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer T, Arndt R, Christophers E et al. Frequency and spectrum of HPV types detected in cutaneous squamous-cell carcinomas depend on the HPV detection system: A comparison of four PCR assays. Dermatology 2000; 201:204–211.

    Article  PubMed  CAS  Google Scholar 

  16. Pfister H. Human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 2003; 31:52–56.

    PubMed  Google Scholar 

  17. Mitsuishi T, Kawana S, Kato T et al. Human papillomavirus infection in actinic keratosis and Bowen’s disease: Comparative study with expression of cell-cycle regulatory proteins p21waf1/cip1, p53, pcna, ki-67, and bcl-2 in positive and negative lesions. Hum Pathol 2003; 34:886–892.

    Article  PubMed  CAS  Google Scholar 

  18. Forslund O, Antonsson A, Higgins G et al. Nucleotide sequence and phylogenetic classification of candidate human papilloma virus type 92. Virology 2003;312:255–260.

    Article  PubMed  CAS  Google Scholar 

  19. Pfister H, ter Schegget J. Role of HPV in cutaneous premalignant and malignant tumors. Clin Dermatol 1997; 15:335–347.

    Article  PubMed  CAS  Google Scholar 

  20. Antonsson A, Forslund O, Ekberg H et al. The ubiquity and impressive genomic diversity of human papillomaviruses suggest a commensalic nature of these viruses. J Virol 2000; 74:11636–11641.

    Article  PubMed  CAS  Google Scholar 

  21. Steger G, Olszewski M, Stockfleth E et al. Prevalence of antibodies to human papillomavirus type 8 in human sera. J Virol 1990; 64:4399–4406.

    PubMed  CAS  Google Scholar 

  22. Bouwes Bavinck JN, Gissmann L, Claas FHJ et al. Relation between skin cancer, humoral responses to human papillomaviruses, and HLA class II molecules in renal transplant recipients. J Immunol 1993; 151:1579–1586.

    CAS  Google Scholar 

  23. Bouwes Bavinck JN, Stark S, Petridis AK et al. The presence of antibodies against virus-like particles of epidermodysplasia verruciformis-associated human papillomavirus type 8 in patients with actinic keratoses. Br J Dermatol 2000; 142:103–109.

    Article  PubMed  CAS  Google Scholar 

  24. Steger G, Pfister H. In vitro expressed HPV8 E6 protein does not bind p53. Arch Virol 1992; 125:355–360.

    Article  PubMed  CAS  Google Scholar 

  25. Stubenrauch F, Malejczyk J, Fuchs PG et al. Late promotor of human papillomavirus type 8 and its regulation. J Virol 1992; 66:3485–3493.

    PubMed  CAS  Google Scholar 

  26. Iftner T, Bierfelder S, Csapo Z et al. Involvement of human papillomavirus type 8 genes E6 and E7 in transformation and replication. J Virol 1988; 62:3655–3661.

    PubMed  CAS  Google Scholar 

  27. Iftner T, Fuchs PG, Pfister H. Two independently transforming functions of human papillomavirus. Curr Top Microbiol Immunol 1989; 144:167–173.

    PubMed  CAS  Google Scholar 

  28. Yamashita T, Segawa K, Fujinaga Y et al. Biological and biochemical activity of E7 genes of the cutaneous human papillomavirus type 5 and 8. Oncogene 1993; 8:2433–2441.

    PubMed  CAS  Google Scholar 

  29. Boxman IL, Mulder LH, Noya F et al. Transduction of the E6 and E7 genes of epidermodysplasia-verruciformis-associated human papillomaviruses alters human keratinocyte growth and differentiation in organotypic cultures. J Invest Dermatol 2001; 117:1397–1404.

    Article  PubMed  CAS  Google Scholar 

  30. Jacyk WK, De Villiers EM. Epidermodysplasia verruciformis in Africans. Int J Dermatol 1993; 32:806–810.

    Article  PubMed  CAS  Google Scholar 

  31. Levine AJ. p53, the cellular gatekeeper for growth and devision. Cell 1997; 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  32. Amundson SA, Myers TG, Fornace Jr AJ. Roles for p53 in growth arrest and apoptosis: Putting on the brakes after genotoxic stress. Oncogene 1998; 17:3287–3299.

    Article  PubMed  Google Scholar 

  33. Jackson S, Harwood C, Thomas M et al. Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 2000; 14:3065–3073.

    Article  PubMed  CAS  Google Scholar 

  34. Jackson S, Storey A. E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 2000; 19:592–598.

    Article  PubMed  CAS  Google Scholar 

  35. Jackson S, Ghali L, Harwood C et al. Reduced apoptotic levels in squamous but not basal cell carcinomas correlates with detection of cutaneous human papillomavirus. Br J Cancer 2002; 87:319–323.

    Article  PubMed  CAS  Google Scholar 

  36. Aubin F, Humbey O, Guérrini JS et al. Cancers cutanés non mélaniques et papillomavirus humains. Ann Dermatol Venereol 2003; 130:1131–1138.

    PubMed  CAS  Google Scholar 

  37. Ford JM, Baron EL, Hanawalt PC. Human fibroblasts expressing the human papillomavirus E6 gene are deficient in global genomic nucleotide excision repair and sensitive to ultraviolet irradiation. Cancer Res 1998; 58:599–603.

    PubMed  CAS  Google Scholar 

  38. Zhang B, Spandau DF, Roman A. E6 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UVB-irradiation-induced apoptosis. J Virol 2002; 76:220–231.

    Article  PubMed  CAS  Google Scholar 

  39. Giarre M, Caldeira S, Malanchi I et al. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16TNK4a-imposed cell cycle arrest. J Virol 2001; 75:4705–4712.

    Article  PubMed  CAS  Google Scholar 

  40. Herber R, Liem A, Pitot H et al. Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J Virol 1996; 70:1873–1881.

    PubMed  CAS  Google Scholar 

  41. Purdie KJ, Pennington J, Proby CM et al. The promotor of a novel human papillomavirus (HPV77) associated with skin cancer displays UV responsiveness, which is mediated through a consensus p53 binding site. EMBO J 1999; 18:5359–5369.

    Article  PubMed  CAS  Google Scholar 

  42. Ruhland A, de Villiers EM. Opposite regulation of the HPV20-URR and HPV27-URR promotors by ultraviolet irradiation and cytokines. Int J Cancer 2001; 91:828–834.

    Article  PubMed  CAS  Google Scholar 

  43. Malkin D, Li FP, Strong LC et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250:1233–1238.

    Article  PubMed  CAS  Google Scholar 

  44. Chazal M, Marionnet C, Michel L et al. P16(INK4A) is implicated in both the immediate and adaptative response of human keratinocytes to UVB irradiation. Oncogene 2002; 21:2652–2661.

    Article  PubMed  CAS  Google Scholar 

  45. Schmitt A, Harry JB, Rapp B et al. Comparison of the properties of the E6 and E7 genes of low-and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol 1994; 68:7051–7059.

    PubMed  CAS  Google Scholar 

  46. Wieland U, Ritzkowsky A, Stoltidis M et al. Papillomavirus DNA in basal cell carcinomas of immunocompetent patients: An accidental association? J Invest Dermatol 2000; 115:124–128.

    Article  PubMed  CAS  Google Scholar 

  47. Akgül B, Karle P, Adam M et al. Dual role of tumor suppressor p53 in regulation of DNA replication and oncogene E6-promotor activity of epidermodysplasia verruciformis-associated human papillomavirus type 8. Virology 2003; 308:279–290.

    Article  PubMed  Google Scholar 

  48. Stubenrauch F, Leigh IM, Pfister H. E2 represses the late gene promotor of human papillomavirus type 8 at high concentrations by interfering with cellular factors. J Virol 1996; 70:119–126.

    PubMed  CAS  Google Scholar 

  49. Bernard BA, Bailly C, Lenoir MC et al. The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol 1989; 63:4317–4324.

    PubMed  CAS  Google Scholar 

  50. Doorbar J, Ely S, Sterling J et al. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 1991; 352:824–827.

    Article  PubMed  CAS  Google Scholar 

  51. Oelze I, Kartenbeck J, Crusius K et al. Human papillomavirus type 16 E5 protein affects cell-cell communication in an epithelial cell line. J Virol 1995; 69:4489–4494.

    PubMed  CAS  Google Scholar 

  52. Finnen RL, Erickson KD, Chen XS et al. Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 2003; 77:4818–4826.

    Article  PubMed  CAS  Google Scholar 

  53. Fuchs PG, Iftner T, Weninger J et al. Epidermodysplasia verruciformis-associated human papillomavirus 8: Genomic sequence and comparative analysis. J Virol 1986; 58:626–634.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bens, G. (2006). Papillomavirus Infections and Cancerogenesis of Squamous Cell and Basal Cell Carcinomas. In: Molecular Mechanisms of Basal Cell and Squamous Cell Carcinomas. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-35098-5_4

Download citation

Publish with us

Policies and ethics