Skip to main content

The Vascular Bed during Critical Illness: Evaluation in Animal Models

  • Conference paper
Intensive Care Medicine
  • 880 Accesses

Abstract

Vascular reactivity has a fundamental role in regulating blood flow and tissue oxygen consumption. Vascular tone is regulated by receptors in endothelial and smooth muscle cells which can be stimulated by biochemical signals or a physical stimulus [1]. Receptor abundance and their response to stimuli is different among the different vascular beds, which enables fine tuning between organ perfusion and oxygen consumption according to different metabolic needs [1]. Vascular reactivity contributes to maintain the adequacy of tissue perfusion in response to acute injury such as sepsis and trauma [2]. This compensatory response can redirect regional blood flow towards organs where a decrease in oxygen consumption would have detrimental consequences for the organism such as the brain and the coronary arteries [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griedlling K, Alexander RW (1994) Cellular biology of blood vessels. In: Hurst JW, Schlant RC (eds) The Heart. McGraw-Hill, New York, pp 31–45

    Google Scholar 

  2. Vallet B (1998) Vascular reactivity and tissue oxygenation. Intensive Care Med 24:3–11

    Article  PubMed  CAS  Google Scholar 

  3. Schlichtig R, Kramer DJ, Pinsky MR (1991) Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol 70:169–178

    PubMed  CAS  Google Scholar 

  4. Marston S, Trevett R, Walters M (1980) Calcium ion-regulated thin filaments from vascular smooth muscle. Biochem J 185:355–365

    PubMed  CAS  Google Scholar 

  5. Wilson DP, Sutherland C, Walsh MP (2002) Ca+2 activation of smooth muscle contraction. J Biol Chem 277:2186–2192

    Article  PubMed  CAS  Google Scholar 

  6. Hoffman B (2001) Cathecolamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman and Gilman’s The pharmacological basis of therapeutics, 10th ed. McGraw-Hill, New York, pp 155–173

    Google Scholar 

  7. Skilton MR, Lai NT, Griffiths KA, et al (2005) Meal-related increases in vascular reactivity are impaired in older and diabetic adults: insights into roles of aging and insulin in vascular flow. Am J Physiol Heart Circ Physiol 288:H1404–H1410

    Article  PubMed  CAS  Google Scholar 

  8. Angus JA, Wright CE (2000) Techniques to study the pharmacodynamics of isolated large and small blood vessels. J Pharmacol Toxicol Methods 44:395–407

    Article  PubMed  CAS  Google Scholar 

  9. Matheson PJ, Garrison RN (2005) Intravital intestinal videomicroscopy: techniques and experiences. Microsurgery 25:247–257

    Article  PubMed  Google Scholar 

  10. Rees DD, Palmer RM, Moncada S (1989) Role of endofhelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Article  PubMed  CAS  Google Scholar 

  11. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endofhelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  12. Gold M, Wood K, Byrns R, Fukuto J, Ignarro L (1990) NG-Methyl-L-arginine causes endothelium-dependent contraction and inhibition of cyclic GMP formation in artery and vein. Proc Natl Acad Sci USA 87:4430–4434

    Article  PubMed  CAS  Google Scholar 

  13. Yang W, Benjamin IS, Alexander B (2001) Nitric oxide modulates acetylcholine-induced vasodilatation in the hepatic arterial vasculature of the dual-perfused rat liver. Acta Physiol Scand 171:413–418

    Article  PubMed  CAS  Google Scholar 

  14. Tabrizchi R, Bedi S (2001) Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther 91:133–147

    Article  PubMed  CAS  Google Scholar 

  15. Fox GA, Paterson NA, Mc Cormack DG (1996) Cyclooxygenase inhibition and vascular reactivity in a rat model of hyperdynamic sepsis. J Cardiovasc Pharmacol 28:30–35

    Article  PubMed  CAS  Google Scholar 

  16. Goraca A (2002) New views on the role of endothelin. Endocrine Regul 36:161–167

    CAS  Google Scholar 

  17. Liu Q, Sham SK, Shimoda LA, Sylvester JT ( 2001) Hypoxic constriction of porcine distal pulmonary arteries: endothelium and endothelin dependence. Am J Physiol 280:L856–L865

    CAS  Google Scholar 

  18. Ledvina MA, Hart J, Bina S, Jing M, Muldoon S (1999) Endothelin plays a role in contractions of isolated pig pulmonary vessels induced by diaspirin cross-linked hemoglobin. J Lab Clin Med 133:478–487

    Article  PubMed  CAS  Google Scholar 

  19. Wiel E, Pu Q, Leclerc J, et al (2004). Effects of the angiostensin-converting enzyme inhibitor perindopril on endothelial injury and hemostasis in rabbit endotoxic shock. Intensive Care Med 30:1652–1659

    Article  PubMed  Google Scholar 

  20. Vallet B, Wiel E (2001) Endothelial cell dysfunction and coagulation. Crit Care Med 29(7 suppl):S36–S41

    Article  PubMed  CAS  Google Scholar 

  21. Wallis JP (2005) Nitric oxide and blood: a review. Transfus Med 15:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Jourdain M, Torunoys A, Lerox X, et al (1997) Effects of N omega-nitro-L-arginine methyl ester on the endotoxin-induced disseminated intravascular coagulation in porcine septic shock. Crit Care Med 25:452–459

    Article  PubMed  CAS  Google Scholar 

  23. Kinasewitz G, Yan B, Basson B, et al (2004) Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism. Crit Care 8:R82–R90

    Article  PubMed  Google Scholar 

  24. Tovar LA, Weikert C, Balsiger B, et al (2005) Decrease in-vitro sensitivity to norepinpephrine after endotoxin — exposure and faecal peritonitis. Intensive Care Med 31(suppl 1):S17 (abst)

    Google Scholar 

  25. Fenger-Gron J, Mulvany MJ, Christensen KL (1995) Mesenteric blood pressure profile of conscious, freely moving rats. J Physiol 488 (Pt 3):753–760

    PubMed  CAS  Google Scholar 

  26. Musser JB, Bentley TB, Griffith S, Sahrma P, Karaian JE, Mongan PD (2004) Hemorrhagic shock in swine: nitric oxide and potassium sensitive adenosine triphosphate channel activation. Anesthesiology 101:399–408

    Article  PubMed  CAS  Google Scholar 

  27. Fink M (1997) Cytophatic hypoxia in sepsis. Acta Anesthesiol Scand Suppl 100:87–95

    Google Scholar 

  28. Fink M (2002) Bench-to-bedside review: cytophatic hypoxia. Crit Care 6:491–499

    Article  PubMed  Google Scholar 

  29. Ince C, Sinaasppel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  30. Wakabayashi G, Gelfand J, Burke J, Thompson R, Dinarello C (1991) A specific receptor antagonist for interleukin 1 prevents Escherichia coli-induced shock in rabbits. FASEB J 5:338–343

    PubMed  CAS  Google Scholar 

  31. Beasley D, Cohen RA, Levinsky NG (1989) Interleukin 1 inhibits contraction of vascular smooth muscle. J Clin Invest 83:331–335

    PubMed  CAS  Google Scholar 

  32. Beasley D, Schwartz JH, Brenner BM (1991) Interleukin 1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest 87:602–608

    Article  PubMed  CAS  Google Scholar 

  33. Boer C, Groeneveld AB, Scheffer GJ, de Lange JJ, Westerhof N, Sipkema P (2005) Induced nitric oxide impairs relaxation but not contraction in endotoxin-exposed rat pulmonary arteries. J Surg Res 127:197–202

    Article  PubMed  CAS  Google Scholar 

  34. Kadlety M, Dignan RJ, Mullen PG, Windsor AC, Sugerman HM, Wechsler AS (1996) Pulmonary artery endothelial cell function in swine pseudomonas sepsis. J Surg Res 60:186–192

    Article  Google Scholar 

  35. Piepot HA, Groeneveld AB, Lambalgen AA, Sipkema P (2002) The role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries. Clin Sci 102:297–305

    Article  PubMed  CAS  Google Scholar 

  36. Macdonald J, Galley HF, Webster NR (2003) Oxidative stress and gene expression in sepsis. Br J Anaesth 90:221–232

    Article  PubMed  CAS  Google Scholar 

  37. Saetre T, Höiby A, Aspelin T, Lermark G, Egeland T, Lyberg T (2000) Aminoefhyl-isothiourea, a nitric oxide synthase inhibitor and oxigen radical scavenger, improves survival and counteracts hemodynamic deterioration in a porcine model of streptococcal shock. Crit Care Med 28:2697–2706

    Article  PubMed  CAS  Google Scholar 

  38. Wu F, Wilson JX, Tyml K (2003) Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integr Comp Physiol 285:R50–R56

    PubMed  CAS  Google Scholar 

  39. Wu F, Wilson JX, Tymil K (2004) Ascorbate protects against impaired arteriolar constriction in sepsis by inhibiting inducible nitric oxide synthase expression. Free Radic Biol Med 37:1282–1289

    Article  PubMed  CAS  Google Scholar 

  40. Wang P, Ba ZB, Chaudry ICH (1995) Endothelium-dependent relaxation is depressed at the macro-and microcirculatory levels during sepsis. Am J Physiol 269:R988–R994

    PubMed  CAS  Google Scholar 

  41. Spronk PE, Ince C, Gardien MJ (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396

    Article  PubMed  Google Scholar 

  42. Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30

    Article  PubMed  CAS  Google Scholar 

  43. Bulkley GB, Kvietys PR, Perry MA, Granger DN (1983) Effects of cardiac tamponade on coIonic hemodynamics and oxygen uptake. Am J Physiol 244:G604–G612

    PubMed  CAS  Google Scholar 

  44. Jakob SM, Tenhunen JJ, Laitinen S, Heino A, Alhava E, Takala J (2001) Effects of systemic arterial hypoperfusion on splanchnic hemodynamics and hepatic arterial buffer response in pigs. Am J Physiol 280:G819–827

    CAS  Google Scholar 

  45. Bracht H, Takala J, Tenhunen JJ, et al (2005) Hepatosplanchnic blood flow control and oxygen extraction are modified by the underlying mechanism of impaired perfusion. Crit Care Med 33:645–653

    Article  PubMed  Google Scholar 

  46. Curtis S, Vallet B, Winn M, et al (1995) Role of the vascular endothelium in O2 extraction during progressive ischemia in canine skeletal muscle. J Appl Phyisiol 79:1351–1360

    CAS  Google Scholar 

  47. Pohl U, Busse R (1989) Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol 256:H1595–H1600

    PubMed  CAS  Google Scholar 

  48. Vallet B, Curtis SE, Winn MJ, King CE, Chapler CK, Cain SM (1994) Hypoxic vasodilation does not require nitric oxide (EDRF/NO) synthesis. J Appl Physiol 76:1256–1261

    Article  PubMed  CAS  Google Scholar 

  49. Andrási TB, Bielik H, Blázovics A, et al (2005) Mesenteric vascular dysfunction after cardiopulmonary bypass with cardiac arrest is aggravated by coexistent heart failure. Shock 23:324–329

    Article  PubMed  Google Scholar 

  50. Doguet F, Lityler PY, Tamion F, et al (2004) Changes in mesenteric vascular reactivity and inflammatory response after cardiopulmonary bypass in a rat model. Ann Thorac Surg 77:2130–2137

    Article  PubMed  Google Scholar 

  51. Wang P, Ba ZB, Chaudry ICH (1993) Entohelial cell dysfunction occurs very early following trauma-hemorrhage and persists despite fluid resuscitation. Am J Physiol 265:H973–H979

    PubMed  CAS  Google Scholar 

  52. Russel JA, Singer J, Bernard G, et al (2000) Changing pattern of organ dysfunction in early human sepsis is related to mortality. Crit Care Med 28:3405–3411

    Article  Google Scholar 

  53. Baveja R, Kresge N, Ashburn JH, et al (2002) Potentiated hepatic microcirculatory response to endothelin-1 during polymicrobial sepsis. Shock 18:415–422

    Article  PubMed  Google Scholar 

  54. Garrison RN, Spain DA, Wilson MA, Keelen PA, Harris PD (1998) Microvascular changes explain the two hit theory of multiple organ failure. Ann Surg 227:851–860

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media Inc.

About this paper

Cite this paper

Gorrasi, J., Takala, J., Jakob, S.M. (2006). The Vascular Bed during Critical Illness: Evaluation in Animal Models. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/0-387-35096-9_12

Download citation

  • DOI: https://doi.org/10.1007/0-387-35096-9_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-30156-3

  • Online ISBN: 978-0-387-35096-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics