Skip to main content

Bi-Directional Cell Trafficking during Pregnancy

Long-Term Consequences for Human Health

  • Chapter
Immunology of Pregnancy

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1611 Accesses

Abstract

During pregnancy some cells traffic between the fetus and mother and recent studies indicate low levels persist in the respective hosts decades later. Microchimerism (Me) refers to a small population of cells or DNA harbored by one individual that derive from a genetically distinct individual. Persistent Me can also arise from cell transfer between twins in utero or after a blood transfusion. Because women are preferentially affected by autoimmune disease, often with an increased incidence in post-reproductive years, fetal Me has been investigated in diseases such as systemic sclerosis (SSc), autoimmune thyroiditis, primary biliary cirrhosis, Sjögren’s syndrome and systemic lupus erythematosus. Maternal Me has been investigated in SSc, myositis and neonatal lupus. Evidence implicating fetal Me is strongest in SSc where quantitatively higher levels of fetal Me have been found and particular human leukocyte antigen (HLA) relationships of mother and child are associated with increased risk of subsequent SSc in the mother. Maternal Me is implicated in myositis and neonatal lupus. It is unknown how Me might be involved in autoimmune disease. Me could play a role in the effector arm of immune responses either directly or indirectly. Microchimeric cells could be targets of an immune response, an intriguing possibility suggested by a recent study in which maternal cells identified in hearts of infants with neonatal lupus congenital heart block were predominantly cardiac myocytes. Alternatively microchimeric cells could be recruited secondarily to diseased tissues and function in tissue repair. The long-term consequences of naturally acquired Me deriving from pregnancy are not yet known. Because persistent fetal and maternal Me are not uncommon in healthy individuals it seems likely that beneficial effects may also accrue to the host. Recent advances in this active frontier of scientific research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lo YM, Lau TK, Chan LY et al. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 2000; 46(9):1301–1309.

    PubMed  CAS  Google Scholar 

  2. Bianchi DW, Zickwolf GK, Weil GJ et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996; 93(2):705–708.

    Article  PubMed  CAS  Google Scholar 

  3. Maloney S, Smith A, Furst DE et al. Microchimerism of maternal origin persists into adult life. J Clin Invest 1999; 104(1):41–47.

    PubMed  CAS  Google Scholar 

  4. De Moor G, De Bock G, Noens L et al. A new case of human chimerism detected after pregnancy: 46,XY karyotype in the lymphocytes of a woman. Acta Clin Belg 1988; 43(3):231–235.

    PubMed  Google Scholar 

  5. Lee TH, Paglieroni T, Ohto H et al. Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: Frequent long-term microchimerism in severe trauma patients. Blood 1999; 93:3127–3139.

    PubMed  CAS  Google Scholar 

  6. Bianchi DW, Farina A, Weber W et al. Significant fetal-maternal hemorrhage after termination of pregnancy: Implications for development of fetal cell microchimerism. Am J Obstet Gynecol 2001; 184:703–706.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson JL. Maternal-fetal immunology and autoimmune disease: Is some autoimmune disease auto-alloimmune or allo-autoimmune? Arthritis Rheum 1996; 39:191–194.

    Article  PubMed  CAS  Google Scholar 

  8. Rouquette-Gally AM, Boyeldieu D, Gluckman E et al. Autoimmunity in 28 patients after allogeneic bone marrow transplantation: Comparison with Sjogren syndrome and scleroderma. Br J Haematol 1987; 66:45–47.

    PubMed  CAS  Google Scholar 

  9. Nelson JL, Furst DE, Maloney S et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 1998; 351:559–562.

    Article  PubMed  CAS  Google Scholar 

  10. Lambert NC, Lo YM, Erickson TD et al. Male microchimerism in healthy women and women with scleroderma: Cells or circulating DNA? A quantitative answer. Blood 2002; 100:2845–2851.

    Article  PubMed  CAS  Google Scholar 

  11. Evans PC, Lambert N, Maloney S et al. Long-term fetal microchimerism in peripheral blood mono-nuclear cell subsets in healthy women and women with scleroderma. Blood 1999; 93:2033–2037.

    PubMed  CAS  Google Scholar 

  12. Artlett CM, Cox LA, Ramos RC et al. Increased microchimeric CD4+ T lymphocytes in peripheral blood from women with systemic sclerosis. Clin Immunol 2002; 103(3 Pt 1):303–308.

    Article  PubMed  CAS  Google Scholar 

  13. Murata H, Nakauchi H, Sumida T. Microchimerism in Japanese women patients with systemic sclerosis. Lancet 1999; 354:220.

    Article  PubMed  CAS  Google Scholar 

  14. Ichikawa N, Kotake S, Hakoda M et al. Microchimerism in Japanese patients with systemic sclerosis. Arthritis Rheum 44:1226–1228.

    Google Scholar 

  15. Gannage M, Amoura Z, Lantz O et al. Feto-maternal microchimerism in connective tissue diseases. Eur J Immunol 2002; 32:3405–3413.

    PubMed  CAS  Google Scholar 

  16. Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 1998; 338:1186–1191.

    Article  PubMed  CAS  Google Scholar 

  17. Ohtsuka T, Miyamoto Y, Yamakage A et al. Quantitative analysis of microchimerism in systemic sclerosis skin tissue. Arch Dermatol Res 2001; 293(8):387–391.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson KL, Nelson JL, Furst DE et al. Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum 2001; 44(8):1848–1854.

    Article  PubMed  CAS  Google Scholar 

  19. Christner PJ, Artlett CM, Conway RF et al. Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride. Arthritis Rheum 2000; 43(11):2598–2605.

    Article  PubMed  CAS  Google Scholar 

  20. Artlett CM, Welsh KI, Black CM et al. Fetal-maternal HLA compatibility confers susceptibility to systemic sclerosis. Immunogenetics 1997; 47(1):17–22.

    Article  PubMed  CAS  Google Scholar 

  21. Lambert NC, Distler O, Muller-Ladner U et al. HLA-DQA1*0501 is associated with diffuse systemic sclerosis in Caucasian men. Arthritis Rheum 2000; 43(9):2005–2010.

    Article  PubMed  CAS  Google Scholar 

  22. Scaletti C, Vultaggio A, Bonifacio S et al. Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum 2002; 46(2):445–450.

    Article  PubMed  CAS  Google Scholar 

  23. Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med 1996; 335(2):99–107.

    Article  PubMed  CAS  Google Scholar 

  24. Davies TF. The thyroid immunology of the postpartum period. Thyroid 1999; 9(7):675–684.

    Article  PubMed  CAS  Google Scholar 

  25. Klintschar M, Schwaiger P, Mannweiler S et al. Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2001; 86(6):2494–2498.

    Article  PubMed  CAS  Google Scholar 

  26. Ando T, Imaizumi M, Graves PN et al. Intrathyroidal fetal microchimerism in Graves’ disease. J Clin Endocrinol Metab 2002; 87(7):3315–3320.

    Article  PubMed  CAS  Google Scholar 

  27. Srivatsa B, Srivatsa S, Johnson KL et al. Microchimerism of presumed fetal origin in thyroid specimens from women: A case-control study. Lancet 2001; 358(9298):2034–2038.

    Article  PubMed  CAS  Google Scholar 

  28. Imaizumi M, Pritsker A, Unger P et al. Intrathyroidal fetal microchimerism in pregnancy and postpartum. Endocrinology 2002; 143(1):247–253.

    Article  PubMed  CAS  Google Scholar 

  29. Toda I, Kuwana M, Tsubota K et al. Lack of evidence for an increased microchimerism in the circulation of patients with Sjögren’s syndrome. Ann Rheum Dis 2001; 60:248–253.

    Article  PubMed  CAS  Google Scholar 

  30. Endo Y, Negishi I, Ishikawa O. Possible contribution of microchimerism to the pathogenesis of Sjogren’s syndrome. Rheumatology (Oxford) 2002; 41(5):490–495.

    Article  PubMed  CAS  Google Scholar 

  31. Aractingi S, Sibilia J, Meignin V et al. Presence of microchimerism in labial salivary glands in systemic sclerosis but not in Sjogren’s syndrome. Arthritis Rheum 2002; 46(4):1039–1043.

    Article  PubMed  Google Scholar 

  32. Kuroki M, Okayama A, Nakamura S et al. Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjogren’s syndrome. Ann Rheum Dis 2002; 61(12):1041–1046.

    Article  PubMed  CAS  Google Scholar 

  33. Abbud Filho M, Pavarino-Bertelli EC, Alvarenga MP et al. Systemic lupus erythematosus and microchimerism in autoimmunity. Transplant Proc 2002; 34(7):2951–2952.

    Article  PubMed  CAS  Google Scholar 

  34. Mosca M, Curcio M, Lapi S et al. Correlations of Y chromosome microchimerism with disease activity in patients with SLE: Analysis of preliminary data. Ann Rheum Dis 2003; 62:651–654.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson KL, McAlindon TE, Mulcahy E et al. Microchimerism in a female patient with systemic lupus erythematosus. Arthritis Rheum 2001; 44:2107–2111.

    Article  PubMed  CAS  Google Scholar 

  36. Gleichmann E, Van Elven EH, Van der Veen JP. A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell cooperation. Preferential formation of autoantibodies characteristic of SLE. Eur J Immunol 1982; 12:152–159.

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka A, Lindor K, Gish R et al. Fetal microchimerism alone does not contribute to the induction of primary biliary cirrhosis. Hepatology 1999; 30:833–838.

    Article  PubMed  CAS  Google Scholar 

  38. Fanning PA, Jonsson JR, Clouston AD et al. Detection of male DNA in the liver of female patients with primary biliary cirrhosis. J Hepatol 2000; 33:690–695.

    Article  PubMed  CAS  Google Scholar 

  39. Corpechot C, Barbu V, Chazouilleres O et al. Fetal microchimerism in primary biliary cirrhosis. J Hepatol 2000; 33:696–700.

    Article  PubMed  CAS  Google Scholar 

  40. Rubbia-Brandt L, Philippeaux MM, Chavez S et al. FISH for Y chromosome in women with primary biliary cirrhosis: Lack of evidence for leukocyte microchimerism. Hepatology 1999; 30:821–822.

    Article  PubMed  CAS  Google Scholar 

  41. Invernizzi P, De Andreis C, Sirchia SM et al. Blood fetal microchimerism in primary biliary cirrhosis. Clin Exp Immunol 2000; 122:418–422.

    Article  PubMed  CAS  Google Scholar 

  42. Parikh-Patel A, Gold E, Utts J et al. The association between gravidity and primary biliary cirrhosis. Ann Epi 2002; 12:264–272.

    Article  Google Scholar 

  43. Turner JH, Wald N, Quinlivan WL. Cytogenetic evidence concerning possible transplacental transfer of leukocytes in pregnant women. Am J Obstet Gynecol 1966; 95:831–833.

    PubMed  CAS  Google Scholar 

  44. Duhring JL, Smith K, Greene Jr JW et al. Placental transfer of maternal erythrocytes into the fetal circulation. Surg Forum 1960; 10:720–722.

    PubMed  CAS  Google Scholar 

  45. Desai RG, Creger WP. Maternofetal passage of leukocytes and platelets in man. Blood 1963; 21:665–673.

    PubMed  CAS  Google Scholar 

  46. Lo YM, Lo ES, Watson N et al. Two-way cell traffic between mother and fetus: Biologic and clinical implications. Blood 1996; 88:4390–4395.

    PubMed  CAS  Google Scholar 

  47. Srivatsa B, Srivatsa S, Johnson KL et al. Maternal cell microchimerism in newborn tissues. J Pediatr 2003; 142:31–35.

    Article  PubMed  Google Scholar 

  48. Reed AM PY, Harwood A, Kredich DW. Chimerism in children with juvenile dermatomyositis. Lancet 2000; 356:2156–2157.

    Article  PubMed  CAS  Google Scholar 

  49. Artlett CM RR, Jiminez SA, Patterson K et al. Detection of microchimeric cells of maternal origin in the periphery and tissues of patients with juvenile idiopathic inflammatory myopathies. Lancet 2000; 356:2155–2156.

    Article  PubMed  CAS  Google Scholar 

  50. Lambert NC, Erickson TD, Yan Z et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: Studies of healthy women and women with scleroderma. Arthritis Rheum 2004; 50:906–914.

    Article  PubMed  CAS  Google Scholar 

  51. Stevens AM, Hermes HM, Rutledge JC et al. Myocardial tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet 2003; 362:1617–1623.

    Article  PubMed  Google Scholar 

  52. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003; 15:3483–3493.

    Article  CAS  Google Scholar 

  53. Lo YM. Fetal DNA in maternal plasma: Biology and diagnostic applications. Clin Chem 2000; 46:1903–1906.

    PubMed  CAS  Google Scholar 

  54. Chiu RW, Poon LL, Lau TK et al. Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem 2001; 47:1607–1613.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Adams, K.M., Nelson, J.L. (2006). Bi-Directional Cell Trafficking during Pregnancy. In: Mor, G. (eds) Immunology of Pregnancy. Medical Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-34944-8_21

Download citation

Publish with us

Policies and ethics