Flexible Access Control with Master Keys

  • Gerald C. Chick
  • Stafford E. Tavares
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 435)


We show how to create a master key scheme for controlling access to a set of services. Each master key is a concise representation for a list of service keys, such that only service keys in this list can be computed easily from the master key. Our scheme is more flexible than others, permitting hierarchical organization and expansion of the set of services.


Central Authority Hierarchical System Modular Exponentiation Rigid Hierarchy Biennial Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    S. G. Akl and P. D. Taylor, Cryptographic solution to a multilevel security problem, in Advances in Cryptology-Proceedings of Crypto’ 82, Springer-Verlag, 1983, pp. 237–249.Google Scholar
  2. [2]
    —, Cryptographic solution to a problem of access control in a hierarchy, ACM Trans. Comput. Syst., 1 (1983), pp. 239–248.CrossRefGoogle Scholar
  3. [3]
    B. L. Chan and H. Meijer, A multiple trusted nodes security system, in 13th Biennial Symposium on Communications, Kingston, Canada, 1986, Queen’s University.Google Scholar
  4. [4]
    D. E. Denning, H. Meijer, and F. B. Schneider, More on master keys for group sharing, Inf. Process. Lett., 13 (1981), pp. 125–126.CrossRefGoogle Scholar
  5. [5]
    D. E. Denning and F. B. Schneider, Master keys for group sharing, Inf. Process. Lett., 12 (1981), pp. 23–25.CrossRefMathSciNetGoogle Scholar
  6. [6]
    W. Diffie, The first ten years of public key cryptography, Proceedings of the IEEE, 76 (1988), p. 565.CrossRefGoogle Scholar
  7. [7]
    I. Ingemarsson, D. T. Tang, and C. K. Wong, A conference key distribution system, IEEE Trans. Information Theory, IT-28 (1982), pp. 714–720.CrossRefMathSciNetGoogle Scholar
  8. [8]
    E. D. Kamin, J. W. Greene, and M. E. Hellman, On secret sharing systems, IEEE Trans. Information Theory, IT-29 (1983), pp. 35–41.Google Scholar
  9. [9]
    S. J. MacKinnon and S. G. Akl, New key generation algorithms for multilevel security, in IEEE Symposium on Security and Privacy, 1983, pp. 72–78.Google Scholar
  10. [10]
    S. J. MacKinnon, P. D. Taylor, H. Meijer, and S. G. Akl, An optimal algorithm for assigning cryptographic keys to control access in a hierarchy, IEEE Trans. Comput., C-34 (1985), pp. 797–802.CrossRefGoogle Scholar
  11. [11]
    H. Meijer, Cryptology: Complexity and Applications, PhD thesis, Department of Mathematics and Statistics, Queen’s University, Kingston, Canada, 1983.Google Scholar
  12. [12]
    J. H. Moore, Protocol failures in cryptosystems, Proceedings of the IEEE, 76 (1988), pp. 594–602.CrossRefGoogle Scholar
  13. [13]
    R. L. Rivest, A. Shamir, and L. Adelman, A method for obtaining digital signatures and public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    R. S. Sandhu, Cryptographic implementation of a tree hierarchy for access control, Inf. Process. Lett., 27 (1988), pp. 95–98.CrossRefGoogle Scholar
  15. [15]
    A. Shamir, How to share a secret, Comm. ACM, 22 (1979), pp. 612–613.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    G. J. Simmons, A ‘weak’ privacy protocol using the RSA cryptoalgorithm, Cryptologia, 7 (1983), pp. 180–182.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Gerald C. Chick
    • 1
  • Stafford E. Tavares
    • 1
  1. 1.Queen’s University at KingstonKingston

Personalised recommendations