Skip to main content

Clinical Overview and Future fMRI Applications

  • Chapter
  • 4707 Accesses

Abstract

The past ten years (1990–2000) had been designated the decade of the brain, as this has been the one of the subjects of major research focus worldwide in medical sciences. During this period there has been tremendous research in brain sciences leading to numerous technological developments and establishment of fundamental clinical protocols to understand brain functions. The next decade beginning the twentyfirst century will continue the momentum of brain research; this is evident from the numerous publications in scientific journals. This is currently one of the most exciting and progressive times in scientific advancement in the field of brain function, and functional magnetic resonance imaging (fMRI) represents one of the most advanced and potentially enlightening techniques that have ever been developed. According to published reports, the number of published research papers using fMRI has increased exponentially from two in 1990 to over 3877 currently (May 2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herault J, Jutten C, Ans B. Détection de grandeurs primitives dans unmessage composite par une architecture de calcul neuromimétique enapprentissage non supervisé. In: Actes du X ème colloque GRETSI, Nice,France; 1985:1017-1022.

    Google Scholar 

  2. Jutten C, Herault J. Blind separation of sources, part I: an adaptivealgorithm based on neuromimetic architecture. Signal Processing. 1991;24:1-10.

    Article  Google Scholar 

  3. Comon P. Independent component analysis, a new concept? Signal Processing. 1994;6:287-314.

    Article  Google Scholar 

  4. Bell AJ, Sejnowski TJ. An information maximization approach to blindseparation and blind deconvolution. Neural Comput. 1995;7(6):1129-1159.

    Article  PubMed  CAS  Google Scholar 

  5. Hyvärinen A, Oja E. A fast fixed-point algorithm for independent compo-nent analysis. Neural Comput. 1997;9(7):1483-1492.

    Article  Google Scholar 

  6. Hyvärinen A, Oja E. Independent components analysis: algorithms andapplications. Neural Netw. 2000;13(4-5):411-430.

    Article  PubMed  Google Scholar 

  7. Hyvärinen A, Karhunen J, Oja E. Independent Component Analysis. NewYork: John Wiley & Sons, Inc.; 2001.

    Google Scholar 

  8. Lee T-W. Independent Component Analysis: Theory and Applications. Boston,MA: Kluwer Academic Publishers; 1998.

    Google Scholar 

  9. Roberts S, Everson R. Independent Component Analysis: Principles andPractice. Cambridge, UK: Cambridge University Press; 2001.

    Google Scholar 

  10. Olshausen BA, Field DJ. Emergence of simple-cell receptive fieldproperties by learning a sparse code for natural images. Nature.1996;381:607-609.

    Article  PubMed  CAS  Google Scholar 

  11. Papoulis A. Probability, Random Variables, and Stochastic Processes. 3rd. NewYork: McGraw-Hill; 1991.

    Google Scholar 

  12. Cover TM, Thomas, JA. Elements of Information Theory. New York: JohnWiley & Sons, Inc.; 1991.

    Google Scholar 

  13. Horn RA, Johnson CR. Matrix Analysis. Cambridge, UK: CambridgeUniversity Press; 1985.

    Google Scholar 

  14. Porrill J, Stone JV. Undercomplete independent component analysis forsignal separation and dimension reduction [online]. Technical Report,Department of Psychology, Sheffield University, England; 1998 [cited 3April 2002]. Available at: ftp://ftp.shef.ac.uk/pub/misc/personal/pc1jvs/papers/ica_dim_red_nips98_WWW.ps.gz.

  15. Nadal J-P, Parga N. Non-linear neurons in the low noise limit: a factorialcode maximizes information transfer. Network. 1994;5:565-581.

    Article  Google Scholar 

  16. Amari S, Cichocki A, Yang H. A new learning algorithm for blindseparation. In: Advances in Neural Information Professing Systems 8. 1996:757-763.

    Google Scholar 

  17. Girolami M, Fyfe C. Extraction of independent signal sources using a defla-tionary exploratory projection pursuit network with lateral inhibition. IEE Proc Vision Image Signal Processing J. 1997;144(5):299-306.

    Article  Google Scholar 

  18. Lee T-W, Girolami M, Sejnowski TJ. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Comput. 1999;11:417-441.

    Article  PubMed  CAS  Google Scholar 

  19. Huber PJ. Projection pursuit. Ann Stat. 1985;13(2):435-475.

    Article  Google Scholar 

  20. McKeown MJ, Makeig S, Brown GG, Jung T-P, Kindermann SS, Bell AJ, Sejnowski TJ. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6:160-188.

    Article  PubMed  CAS  Google Scholar 

  21. Esposito F, Formisano E, Seifritz E, Goebel R, Morrone R, Tedeschi G, Di Salle F. Spatial independent component analysis of functional MRI time-series: To what extend do results depend on the aligorithm used? Hum Brain Mapp. 2002;16:146-157.

    Article  PubMed  Google Scholar 

  22. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for group infer-ences from functional MRI data independent component analysis. Hum Brain Mapp. 2001;14:140-151.

    Article  PubMed  CAS  Google Scholar 

  23. Green CG, Nandy RR, Cordes D. PCA Preprocessing of fMRI Data Adversely Affects the Results of ICA. Paper presented at: ISMRM 10th Scientific Meeting and Exhibition; May 18-24, 2002; Honolulu, Hawaii.

    Google Scholar 

  24. Brockwell PJ, Davis RJ. Time Series: Theory and Methods. New York: Springer-Verlag; 1993.

    Google Scholar 

  25. Beckmann CF, Noble JA, Smith SM. Investigating the intrinsic dimen-sionality of FMRI data for ICA. Paper presented at: Seventh International. Conference on Functional Mapping of the Human Brain; 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faro, S.H., Mohamed, F.B. (2006). Clinical Overview and Future fMRI Applications. In: Faro, S.H., Mohamed, F.B. (eds) Functional MRI. Springer, New York, NY. https://doi.org/10.1007/0-387-34665-1_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-34665-1_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-23046-7

  • Online ISBN: 978-0-387-34665-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics