Skip to main content

Pharmacological Applications of fMRI

  • Chapter
  • 4677 Accesses

Abstract

Over the last few years, functional magnetic resonance imaging (fMRI) has developed rapidly into a powerful means of investigating both the pharmacological effects of drugs on neuronal activity and, with the ability to make real-time measurements of specific behaviors and physiological processes, the correlation of those neuronal changes with changes in behavior and various markers of the internal milieu. This prospect of combining powerful, noninvasive brain imaging with careful behavioral, cognitive, and physiological monitoring holds tremendous opportunity for advancing not only our understanding of fundamental brain mechanisms, but also clinical applications such as diagnostic procedures, medications development, treatment matching, and outcomes prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger H. Uber das elektrenkephalogramm des menschen. Archiv fur Psychiatrie und Nervenkrankheiten. 1929;87:527–570.

    Article  Google Scholar 

  2. Knight RT. Electrophysiology in behavioral neurology. In: Mesulam M-M, ed. Principles of Behavioral Neurology. Philadelphia: FA Davis; 1985:327–346.

    Google Scholar 

  3. Sokoloff L. Metabolic Probes of Central Nervous System Activity in Experimental Animals and Man. Magnes Lecture Series. Vol. 1. Sunderland, MA: Sinauer Associates Inc.; 1984.

    Google Scholar 

  4. Kotrla KJ. Functional Neuroimaging in Psychiatry. In: Yudofsky SC, Hales RE, eds. The American Psychiatric Press Textbook of Neuropsychiatry. Washington DC: American Psychiatric Press; 1997:239–270.

    Google Scholar 

  5. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–9872.

    Article  PubMed  CAS  Google Scholar 

  6. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89:5675–5679.

    Article  CAS  Google Scholar 

  7. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–397.

    Article  PubMed  CAS  Google Scholar 

  8. Bonmassar G, Anami K, Ives J, Belliveau JW. Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport. 1999;10:1893–1897.

    Article  PubMed  CAS  Google Scholar 

  9. Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ. Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience. 2000;101:803–806.

    Article  PubMed  CAS  Google Scholar 

  10. Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A. Combined eventrelated fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport. 1997;8:3029–3037.

    Article  PubMed  CAS  Google Scholar 

  11. Heeger DJ, Huk AC, Geisler WS, Albrecht DG. Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci. 2000;3:631–633.

    Article  PubMed  CAS  Google Scholar 

  12. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–157.

    Article  PubMed  CAS  Google Scholar 

  13. Roy CS, Sherrington CS. On the regulation of the blood supply of the brain. J Physiol. 1890;11:85–108.

    PubMed  CAS  Google Scholar 

  14. Kuschinsky W, Wahl M. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev. 1978;58:656–689.

    PubMed  CAS  Google Scholar 

  15. Iadecola C. Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci. 1998;1:263–265.

    Article  PubMed  CAS  Google Scholar 

  16. Mraovitch S, Sercombe R. Neurophysiological Basis of Cerebral Blood Flow Control: An Introduction. London, England: John Libbey & Company, Ltd;1996.

    Google Scholar 

  17. Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7:240–276.

    PubMed  CAS  Google Scholar 

  18. Brian JE, Jr, Faraci FM, Heistad DD. Recent insights into the regulation of cerebral circulation. Clin Exper Pharmacol Physiol. 1996;23:449–457.

    Article  CAS  Google Scholar 

  19. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 1997;10:197–203.

    CAS  Google Scholar 

  20. Corfield DR, Murphy K, Josephs O, Adams L, Turner R. Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation? Neuroimage. 2001;13:1207–1211.

    Article  PubMed  CAS  Google Scholar 

  21. Rao SM, Salmeron BJ, Durgerian S, et al. Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. Am J Psychiatry. 2000;157:1697–1699.

    Article  PubMed  CAS  Google Scholar 

  22. Rao SM, Bandettini PA, Binder JR, et al. Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab. 1996;16:1250–1254.

    Article  PubMed  CAS  Google Scholar 

  23. Gollub RL, Breiter HC, Kantor H, et al. Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cereb Blood Flow Metab. 1998;18:724–734.

    Article  PubMed  CAS  Google Scholar 

  24. Hall DA, Haggard MP, Akeroyd MA, et al. Modulation and task effects in auditory processing measured using fMRI. Hum Brain Mapp. 2000;10:107–119.

    Article  PubMed  CAS  Google Scholar 

  25. Martin E, Thiel T, Joeri P, et al. Effect of pentobarbital on visual processing in man. Hum Brain Mapp. 2000;10:132–139.

    Article  PubMed  CAS  Google Scholar 

  26. Born AP, Rostrup E, Miranda MJ, Larsson HB, Lou HC. Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging. 2002;20:199–205.

    Article  CAS  Google Scholar 

  27. Mathew R, Wilson W. Substance abuse and cerebral blood flow. Am J Psychiatry. 1991;148:292–305.

    CAS  Google Scholar 

  28. Rhodes LE, Obitz FW, Creel D. Effect of alcohol and task on hemispheric asymmetry of visually evoked potentials in man. Electroencephalogr Clin Neurophysiol. 1975;38:561–568.

    Article  PubMed  CAS  Google Scholar 

  29. Porjesz B, Begleiter H. Alcohol and bilateral evoked brain potentials. Adv Exper Med Biol. 1975;59:553–567.

    CAS  Google Scholar 

  30. Lewis EG, Dustman RE, Beck EC. The effects of alcohol on visual and somato-sensory evoked responses. Electroencephalogr Clin Neurophysiol. 1970;28:202–205.

    Article  PubMed  CAS  Google Scholar 

  31. Levin JM, Ross MH, Mendelson JH, et al. Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res. 1998;82:135–146.

    Article  CAS  Google Scholar 

  32. Bruhn H, Kleinschmidt A, Boecker H, Merboldt KD, Hanicke WJF. The effect of acetazolamide on regional cerebral blood oxygenation at rest and under stimulation as assessed by MRI. J Cereb Blood Flow Metab. 1994;14:742–748.

    Article  PubMed  CAS  Google Scholar 

  33. Oishi M, Mochizuki Y, Hara M, Takasu T. P300 and xenon computed tomography before and after intravenous injection of acetazolamide. Arch Neurol. 1995;52:850–851.

    CAS  Google Scholar 

  34. Shimosegawa E, Kanno I, Hatazawa J, et al. Photic stimulation study of changing the arterial partial pressure level of carbon dioxide. J Cereb Blood Flow Metab. 1995;15:111–114.

    Article  CAS  Google Scholar 

  35. Seifritz E, Bilecen D, Hanggi D, et al. Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI. Psychiatry Res. 2000;99:1–13.

    Article  CAS  Google Scholar 

  36. Breiter HC, Gollub RL, Weisskoff RM, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611.

    Article  PubMed  CAS  Google Scholar 

  37. Ward BD, Garavan H, Ross TJ, Bloom AS, Cox RW, Stein EA. Nonlinear regression for fMRI time series analysis. Neuroimage. 1998;7:S767.

    Google Scholar 

  38. Bloom AS, Hoffmann RG, Fuller SA, Pankiewicz J, Harsch HH, Stein EA. Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp. 1999;8:235–244.

    Article  PubMed  CAS  Google Scholar 

  39. Stein EA, Pankiewicz J, Harsch HH, et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry. 1998;155:1009–1015.

    PubMed  CAS  Google Scholar 

  40. Wise RA, Hoffman DC. Localization of drug reward mechanisms by intracranial injections. Synapse. 1992;10:247–263.

    Article  PubMed  CAS  Google Scholar 

  41. Self DW. Neural substrates of drug craving and relapse in drug addiction. Ann Med. 1998;30:379–389.

    Article  PubMed  CAS  Google Scholar 

  42. Mu Q, Ross T, Risinger RC, et al. Dose-dependent responses of acute cocaine administration in humans using fMRI. Neurosci Abs. 2001.

    Google Scholar 

  43. McKeown MJ, Makeig S, Brown GG, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6:160–188.

    Article  PubMed  CAS  Google Scholar 

  44. Liu Y, Gao JH, Liu HL, Fox PT. The temporal response of the brain after eating revealed by functional MRI. Nature. 2000;405:1058–1062.

    Article  PubMed  CAS  Google Scholar 

  45. Fadili MJ, Ruan S, Bloyet D, Mazoyer B. A multistep unsupervised fuzzy clustering analysis of fMRI time series. Hum Brain Mapp. 2000;10:160–178.

    Article  PubMed  CAS  Google Scholar 

  46. Patterson JCN, Ungerleider LG, Bandettini PA. Task-independent functional brain activity correlation with skin conductance changes: an fMRI study. Neuroimage. 2002;17:1797–1806.

    Article  PubMed  Google Scholar 

  47. Donaldson DI, Buckner RL. Trying versus succeeding: event-related designs dissociate memory processes. Neuron. 1999;22:412–414.

    Article  PubMed  CAS  Google Scholar 

  48. Thiel CM, Henson RN, Dolan RJ. Scopolamine but not lorazepam modulates face repetition priming: a psychopharmacological fMRI study. Neuropsychopharmacology. 2002;27:282–292.

    CAS  Google Scholar 

  49. Garavan H, Ross TJ, Stein EA. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA. 1999;96:8301–8306.

    Article  PubMed  CAS  Google Scholar 

  50. Lawrence NS, Ross TJ, Stein EA. Cognitive mechanisms of nicotine on visual attention. Neuron. 2002;36:539–548.

    Article  PubMed  CAS  Google Scholar 

  51. Furey ML, Pietrini P, Haxby JV. Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science. 2000;290:2315–2319.

    Article  PubMed  CAS  Google Scholar 

  52. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry.2001;50:651–658.

    Article  PubMed  CAS  Google Scholar 

  53. Stephan KE, Magnotta VA, White T, et al. Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med. 2001;31:1065–1078.

    Article  PubMed  CAS  Google Scholar 

  54. Li SJ, Biswal B, Li Z, et al. Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med. 2000;43:45–51.

    Article  PubMed  CAS  Google Scholar 

  55. Belliveau JW, Rosen BR, Kantor HL, et al. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med. 1990;14:538–546.

    Article  PubMed  CAS  Google Scholar 

  56. Chen YCI, Galpern WR, Brownell AL, et al. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med. 1997;38:389–398.

    Article  PubMed  CAS  Google Scholar 

  57. Mandeville JB MJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation. Magn Reson Med. 1999;42:944–951.

    Article  PubMed  CAS  Google Scholar 

  58. Marota JJA, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE. Cocaine activation discriminates projections by temporal response: an fMRI study in rat. Neuroimage. 2000;11:13–23.

    Article  PubMed  CAS  Google Scholar 

  59. Kaufman MJ, Levin JM, Maas LC, et al. Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study. Psychopharmacology. 1998;138:76–81.

    Article  PubMed  CAS  Google Scholar 

  60. Streeter CC, Ciraulo DA, Harris GJ, et al. Functional magnetic resonance imaging of alprazolam-induced changes in humans with familial alcoholism. Psychiatry Res. 1998;82:69–82.

    Article  PubMed  CAS  Google Scholar 

  61. Aellig WH. Nuclear magnetic resonance in clinical pharmacology and measurement of therapeutic response. Br J Clin Pharmacol. 1990;29:157–167.

    Article  PubMed  CAS  Google Scholar 

  62. Gonzalez RG, Guimaraes AR, Sachs GS, Rosenbaum JF, Garwood M, Renshaw PF. Measurement of human brain lithium in vivo by MR spectroscopy. AJNR Am J Neuroradiol. 1993;14:1027–1037.

    PubMed  CAS  Google Scholar 

  63. Henry ME, Moore CM, Kaufman MJ, et al. Brain kinetics of paroxetine and fluoxetine on the third day of placebo substitution: a fluorine MRS study. Am J Psychiatry. 2000;157:1506–1508.

    Article  PubMed  CAS  Google Scholar 

  64. Kato T, Takahashi S, Inubushi T. Brain lithium concentration by 7Li- and 1H-magnetic resonance spectroscopy in bipolar disorder. Psychiatry Res.1992;45:53–63.

    Article  PubMed  CAS  Google Scholar 

  65. Komoroski RA, Newton JE, Sprigg JR, Cardwell D, Mohanakrishnan P, Karson CN. In vivo 7Li nuclear magnetic resonance study of lithium pharmacokinetics and chemical shift imaging in psychiatric patients. Psychiatry Res. 1993;50:67–76.

    CAS  Google Scholar 

  66. Renshaw PF, Guimaraes AR, Fava M, et al. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am J Psychiatry. 1992;149:1592–1594.

    CAS  Google Scholar 

  67. Petroff OA, Hyder F, Mattson RH, Rothman DL. Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology. 1999;52:473–478.

    CAS  Google Scholar 

  68. Sonawalla SB, Renshaw PF, Moore CM, et al. Compounds containing cytosolic choline in the basal ganglia: a potential biological marker of true drug response to fluoxetine. Am J Psychiatry. 1999;156:1638–c1640.

    PubMed  CAS  Google Scholar 

  69. Li S-J, Wang Y, Pankiewicz J, Stein EA. Neurochemical adaptation to cocaine abuse: reduction of N-acetyl aspartate in thalamus of human cocaine abusers. Biol Psychiatry. 1999;45:1481–1487.

    Article  PubMed  CAS  Google Scholar 

  70. Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology. 2000;54:1344–1349.

    CAS  Google Scholar 

  71. Chang L, Mehringer CM, Ernst T, et al. Neurochemical alterations in asymptomatic abstinent cocaine users: a proton magnetic resonance spectroscopy study. Biol Psychiatry. 1997;42:1105–1114.

    Article  PubMed  CAS  Google Scholar 

  72. Ernst T, Chang L, Cooray D, et al. The effects of tamoxifen and estrogen on brain metabolism in elderly women. [comment]. J Natl Cancer Inst. 2002;94:592–597.

    Article  PubMed  CAS  Google Scholar 

  73. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000;285:107–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salmeron, B.J., Stein, E.A. (2006). Pharmacological Applications of fMRI. In: Faro, S.H., Mohamed, F.B. (eds) Functional MRI. Springer, New York, NY. https://doi.org/10.1007/0-387-34665-1_17

Download citation

  • DOI: https://doi.org/10.1007/0-387-34665-1_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-23046-7

  • Online ISBN: 978-0-387-34665-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics