Keywords
- Harmonic Analysis
- Irreducible Representation
- Compact Group
- Heisenberg Group
- Haar Measure
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
Bibliography
V. Bargmann, Irreducible representations of the Lorentz group, Ann. of Math., 48 (1947), 568–640.
H. Behnke, F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen (1962), Springer-Verlag, Berlin, Göttingen, Heidelberg.
S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann., 108 (1933), 378–410.
N. Bourbaki, Intégration, Chapitres 1–8 (1952–1959), Hermann, Paris.
J. Dixmier, C*-Algebras (1969, English Translation 1977), North-Holland Publishing Company, Amsterdam, New York, Oxford.
G.B. Folland, A Course in Abstract Harmonic Analysis (1995), CRC Press, Boca Raton, Ann Arbor, London, Tokyo.
W. Fulton, J. Harris, Representation Theory (1991), Springer.
I.M. Gelfand, M.A. Neumark, Unitäre Darstellungen der klassischen Gruppen (1950, German Translation 1957), Akademie Verlag, Berlin.
I.M. Gelfand and D.A. Raikov, Irreducible unitary Representations of locally bicompact groups, Mat. Sb 13(55) (1942), 301–316
I.M. Gel’fand, G.E. Shilov, Generalized Functions I (Properties and Operations) (1958, English translation 1963), Academic Press, New York and London.
I.M. Gel’fand, M.I. Graev, N.Ya. Vilenkin, Generalized Functions V (Integral Geometry and Representation Theory) (1962, English translation 1966), Academic Press, New York and London.
S. Helgason, Groups and Geometric Analysis (1984), Academic Press, New York. London, Sydney, Tokyo, Toronto, etc.
A.A. Kirillov, Elements of the Theory of Representations (1976), Springer-Verlag, Berlin, Heidelberg, New York.
A. Knapp, Representation Theory of Semisimple Groups (1986), Princeton University Press, Princeton.
G.W. Mackey, On induced representations of groups (1951), Amer. J. Math. 73, 576–592.
G.W. Mackey, Induced Representations of Groups and Quantum Mechanics (1968), W.A. Benjamin, New York, Amsterdam.
M.A. Neumark, Lineare Darstellungen der Lorentzgruppe (1958, German Translation 1963), VEB Deutscher Verlag der Wissenschaften, Berlin.
F. Peter, H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), 737–755.
T.O. Sherman, Fourier analysis on the sphere, Trans. Amer. Math. Soc. 209, 1–31 (1975).
R.S. Strichartz, Harmonic analysis on hyperboloids, Journal of Functional Analysis 12, 341–383 (1973).
F. Treves, Topological Vector Spaces, Distributions and Kernels (1967), Academic Press, New York, London.
E. P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40 (1939), 149–204.
Rights and permissions
Copyright information
© 2006 Springer Science+Business Media, Inc.
About this chapter
Cite this chapter
(2006). Harmonic Analysis. In: Operational Quantum Theory II. Operational Physics. Springer, New York, NY . https://doi.org/10.1007/0-387-34644-9_8
Download citation
DOI: https://doi.org/10.1007/0-387-34644-9_8
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-29776-7
Online ISBN: 978-0-387-34644-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)
