Skip to main content

Harmonic Analysis

  • Chapter
  • 665 Accesses

Part of the Operational Physics book series (OPPH)

Keywords

  • Harmonic Analysis
  • Irreducible Representation
  • Compact Group
  • Heisenberg Group
  • Haar Measure

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. V. Bargmann, Irreducible representations of the Lorentz group, Ann. of Math., 48 (1947), 568–640.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. H. Behnke, F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen (1962), Springer-Verlag, Berlin, Göttingen, Heidelberg.

    Google Scholar 

  3. S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse, Math. Ann., 108 (1933), 378–410.

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. N. Bourbaki, Intégration, Chapitres 1–8 (1952–1959), Hermann, Paris.

    Google Scholar 

  5. J. Dixmier, C*-Algebras (1969, English Translation 1977), North-Holland Publishing Company, Amsterdam, New York, Oxford.

    MATH  Google Scholar 

  6. G.B. Folland, A Course in Abstract Harmonic Analysis (1995), CRC Press, Boca Raton, Ann Arbor, London, Tokyo.

    MATH  Google Scholar 

  7. W. Fulton, J. Harris, Representation Theory (1991), Springer.

    Google Scholar 

  8. I.M. Gelfand, M.A. Neumark, Unitäre Darstellungen der klassischen Gruppen (1950, German Translation 1957), Akademie Verlag, Berlin.

    MATH  Google Scholar 

  9. I.M. Gelfand and D.A. Raikov, Irreducible unitary Representations of locally bicompact groups, Mat. Sb 13(55) (1942), 301–316

    MathSciNet  Google Scholar 

  10. I.M. Gel’fand, G.E. Shilov, Generalized Functions I (Properties and Operations) (1958, English translation 1963), Academic Press, New York and London.

    Google Scholar 

  11. I.M. Gel’fand, M.I. Graev, N.Ya. Vilenkin, Generalized Functions V (Integral Geometry and Representation Theory) (1962, English translation 1966), Academic Press, New York and London.

    Google Scholar 

  12. S. Helgason, Groups and Geometric Analysis (1984), Academic Press, New York. London, Sydney, Tokyo, Toronto, etc.

    MATH  Google Scholar 

  13. A.A. Kirillov, Elements of the Theory of Representations (1976), Springer-Verlag, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  14. A. Knapp, Representation Theory of Semisimple Groups (1986), Princeton University Press, Princeton.

    MATH  Google Scholar 

  15. G.W. Mackey, On induced representations of groups (1951), Amer. J. Math. 73, 576–592.

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. G.W. Mackey, Induced Representations of Groups and Quantum Mechanics (1968), W.A. Benjamin, New York, Amsterdam.

    MATH  Google Scholar 

  17. M.A. Neumark, Lineare Darstellungen der Lorentzgruppe (1958, German Translation 1963), VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  18. F. Peter, H. Weyl, Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe, Math. Ann. 97 (1927), 737–755.

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. T.O. Sherman, Fourier analysis on the sphere, Trans. Amer. Math. Soc. 209, 1–31 (1975).

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. R.S. Strichartz, Harmonic analysis on hyperboloids, Journal of Functional Analysis 12, 341–383 (1973).

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. F. Treves, Topological Vector Spaces, Distributions and Kernels (1967), Academic Press, New York, London.

    MATH  Google Scholar 

  22. E. P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics 40 (1939), 149–204.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Harmonic Analysis. In: Operational Quantum Theory II. Operational Physics. Springer, New York, NY . https://doi.org/10.1007/0-387-34644-9_8

Download citation

Publish with us

Policies and ethics