Skip to main content

PET-Computed Tomography Atlas

  • Chapter
  • 972 Accesses

Abstract

Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a functional imaging modality that capitalizes on the fact that pathologic processes are generally highly metabolically active and accumulate more glucose (and FDG) than normal tissue. However, sites of normal metabolic activity can also demonstrate intense FDG uptake and can sometimes be difficult to distinguish from disease activity. Fusion imaging modalities that acquire both functional and correlative anatomic imaging provide an important advantage over PET alone because they allow the accurate anatomic localization of sites of increased FDG activity (1–5). In this chapter, normal sites of FDG activity are correlated with computed tomography (CT) anatomy in images obtained during PET-CT scanning. Examples of pathologic FDG activity are included to illustrate the unique value of this fusion imaging modality in distinguishing normal from pathologic activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kluetz PG, Meltzer CC, Villemagne VL, et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging 2000;3: 223–230.

    Article  PubMed  Google Scholar 

  2. Eubank WB, Mankoff DA, Schmiedl UP, et al. Imaging of oncologic patients: benefit of combined CT and FDG PET in the diagnosis of malignancy. AJR 1998;171:1103–1110.

    CAS  PubMed  Google Scholar 

  3. Charron M, Beyer T, Bohnen NN, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000; 25:905–910.

    Article  CAS  PubMed  Google Scholar 

  4. Bar-Shalom R, Yefremov N, Guralnik L, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003;44:1200–1209.

    PubMed  Google Scholar 

  5. Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002;75(Spec No.):S24–S30.

    PubMed  Google Scholar 

  6. Stahl A, Dzewas B, Schwaiger M, et al. Excretion of FDG into saliva and its significance for PET imaging. Nuklearmedizin 2002;41:214–216.

    CAS  PubMed  Google Scholar 

  7. Goerres GW, Von Schulthess GK, Hany TF. Positron emission tomography and PET CT of the head and neck: FDG uptake in normal anatomy, in benign lesions, and in changes resulting from treatment. AJR 2002;179: 1337–1343.

    PubMed  Google Scholar 

  8. Kostakoglu L, Hardoff R, Mirtcheva R, et al. PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics 2004;24:1411–1431.

    Article  PubMed  Google Scholar 

  9. Zhu Z, Chou C, Yen TC, et al. Elevated F-18 FDG uptake in laryngeal muscles mimicking thyroid cancer metastases. Clin Nucl Med 2001;26: 689–691.

    Article  CAS  PubMed  Google Scholar 

  10. Himms-Hagen J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J 1990;4:2890–2898.

    CAS  PubMed  Google Scholar 

  11. Hany TF, Gharehpapagh E, Kamel EM, et al. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 2002;30:1393–1398.

    Article  Google Scholar 

  12. Cohade C, Osman M, Pannu HK, et al. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 2003;44: 170–176.

    CAS  PubMed  Google Scholar 

  13. Hedlund GL, Kirks DR. Respiratory system. In: Kirks DR, ed. Practical Pediatric Imaging, 2nd ed. Cincinnati: Little, Brown, 1991:517–707.

    Google Scholar 

  14. Gordon BA, Flanagan FL, Dehdashti F. Whole-body positron emission tomography: normal variations, pitfalls, and technical considerations. AJR 1997;169:1675–1680.

    CAS  PubMed  Google Scholar 

  15. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61–77.

    CAS  PubMed  Google Scholar 

  16. Kostakoglu L, Wong JC, Barrington SF, et al. Speech-related visualization of laryngeal muscles with fluorine-18-FDG. J Nucl Med 1996;37:1771–1773.

    CAS  PubMed  Google Scholar 

  17. Tatlidil R, Jadvar H, Bading JR, et al. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 2002;224:783–787.

    Article  PubMed  Google Scholar 

  18. Chander S, Meltzer CC, McCook BM. Physiologic uterine uptake of FDG during menstruation demonstrated with serial combined positron emission tomography and computed tomography. Clin Nucl Med 2002; 27:22–24.

    Article  PubMed  Google Scholar 

  19. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 1996;37:1127–1130.

    CAS  PubMed  Google Scholar 

  20. Mossberg KA, Mommessin JI, Taegtmeyer H. Skeletal muscle glucose uptake during short-term contractile activity in vivo: effect of prior contractions. Metabolism 1993;42:1609–1616.

    Article  CAS  PubMed  Google Scholar 

  21. Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR 2001;177:230–236.

    Google Scholar 

  22. Babyn PS, Ranson M, McCarville ME. Normal bone marrow. In: Mirowitz SA, Jaramillo D, eds. MRI Clinics. Philadelphia: WB Saunders, 1998: 473–495.

    Google Scholar 

  23. Moore SG, Dawson KL. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 1990;175:219–223.

    CAS  PubMed  Google Scholar 

  24. Ricci C, Cova M, Kang YS, et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990;177:83–88.

    CAS  PubMed  Google Scholar 

  25. Sugawara Y, Fisher SJ, Zasadny KR, et al. Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998;16:173–180.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

McCarville, M.B. (2006). PET-Computed Tomography Atlas. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_30

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics