Skip to main content

An Incremental Learning Algorithm for Inferring Logical Rules from Examples in the Framework of the Common Reasoning Process

  • Chapter
Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques

Part of the book series: Massive Computing ((MACO,volume 6))

Abstract

In this chapter we present a model of common sense reasoning that combines a pattern recognition and learning of logical rules from examples. The class of rules is implicative but these rules can be represented in different forms. The model of knowledge base and an example of the reasoning process based on knowledge are considered. An approach is proposed for inferring implicative logical rules from examples. The concept of a good diagnostic test for a given set of positive examples lies in the basis of this approach. The process of inferring good diagnostic tests is considered as a process of inductive common sense reasoning. The incremental approach to learning algorithms allows revealing the interdependence between two fundamental components of human thinking: pattern recognition (deductive inference) and knowledge acquisition (inductive inference).

Triantaphyllou, E. and G. Felici (Eds.), Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques, Massive Computing Series, Springer, Heidelberg, Germany, pp. 89–147, 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. W. Alkharaouf and R. S. Michalski, “Multi-Strategy Task-Adaptive Learning Using Dynamic Interlaced Hierarchies: Methodology and Initial Implementation of InterLACE”, Proceedings of the Third International Workshop on Multistrategy Learning (MSL-96), Harpers Ferry, WV, USA, pp. 117–124, 1996.

    Google Scholar 

  • A. V. Aho, J. E. Hopcraft, J. D. Ullman, The Design and Analysis of Computer Algorithms, Publishing Company “Mir”: Moscow, USSR, 1979.

    MATH  Google Scholar 

  • G. Birkhoff, Lattice Theory, second edition, Amer. Math. Soc, Providence, R. I., 1948 (Russian edition: Moscow, “Foreign Literature”, 1954).

    Google Scholar 

  • N. G. Boldyrev, “Minimization of Boolean Partial Functions with a Large Number of “Don’t Care” Conditions and the Problem of Feature Extraction”, Proceedings of International Symposium “Discrete Systems”, Riga, Latvia, pp. 101–109, 1974.

    Google Scholar 

  • S. Cosmadakis, P. C. Kanellakis, N. Spyratos, “Partition Semantics for Relations”, Journal of Computer and System Sciences, Vol. 33, No. 2, pp. 203–233, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Demetrovics and D. T. Vu, “Generating Armstrong Relation Schemes and Inferring Functional Dependencies from Relations”, International Journal on Information Theory & Applications, Vol. 1, No. 4, pp.3–12, 1993.

    Google Scholar 

  • H. Ericson, A. R. Puerta, and M. A. Musen, “Generation of Knowledge Acquisition Tools from Domain Ontologies”, International Journal of Human Computer Studies, Vol. 41, pp. 425–453, 1992.

    Article  Google Scholar 

  • M. Ester, H. P. Kriegel, J. Sander, M. Wimmer, X. Xu, “Incremental Clustering for Mining in a Data Warehousing Environment”, Proceedings of the 24th VLDB Conference, New York, NY, USA, pp. 323–333, 1998.

    Google Scholar 

  • R. Feldman, Y. Aumann, A. Amir, H. Mannila, “Efficient Algorithms for Discovering Frequent Sets in Incremental Databases”, Proceeding of ACM SIGMOD Workshop on Research Issue on Data Mining and Knowledge Discovery, Tucson, AZ, USA, pp. 59–66, 1997.

    Google Scholar 

  • V. K. Finn, “Inductive Models of Knowledge Representation in Man-Machine and Robotics Systems”, Proceedings of VINITI, Vol. A, pp.58–76, 1984.

    Google Scholar 

  • J.-Gabriel. Ganascia, “EKAW-89 Tutorial Notes: Machine Learning”, Third European Workshop on Knowledge Acquisition for Knowledge-Based Systems, Paris, France, pp. 287–296, 1989.

    Google Scholar 

  • U. Gappa, and K. Poeck, “Common Ground and Differences of the KADS and Strong Problem Solving Shell Approach”, EKAW — 92, Lecture Notes in Artificial Intelligence, No. 599, pp. 52–73, 1992.

    Google Scholar 

  • C. Giraud-Carrier, “A Note on the Utility on Incremental Learning”, AI Communication, ISSN 0921-7126, IOS Press, Vol. 13, No. 4, pp. 215–223, 2000.

    MATH  Google Scholar 

  • C. Giraud-Carrier, and T. Martinez, “ILA: Combining Inductive Learning with Prior Knowledge and Reasoning”, Technical report, No. CSTR-95-03, University of Bristol, Department of Computer Science, Bristol, UK, 1995.

    Google Scholar 

  • J. Han, R. T. Ng, Y. Fu, Y., “Intelligent Query Answering by Knowledge Discovery Techniques”, IEEE Trans, on Knowledge and Data Engineering, Vol. 8, pp.373–390, 1996.

    Article  Google Scholar 

  • J. Han, S. Nishiro, H. Kawano, W. Wang, “Generalization-Based Data Mining in Object-Oriented Databases Using an Object Cube Model”, Data and Knowledge Engineering, Vol. 25, No. 1–2, pp. 55–97, 1998.

    Article  MATH  Google Scholar 

  • J. Han, “Towards On-Line Analytical Mining in Large Databases”, ACM SIG MOD RECORD, Vol. 27, No. 1, pp. 97–107, 1998.

    Article  Google Scholar 

  • Y. Huntala, J. Karkkainen, P. Porkka, and H. Toivonen, “TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies”, The Computer Journal, Vol. 42, No. 2, pp. 100–111, 1999.

    Article  Google Scholar 

  • S. O. Kuznetsov, “Fast Algorithm of Constructing All the Intersections of Finite Semi-Lattice Objects”, Proceedings of VINITI, Series 2, No. 1, pp. 17–20, 1993.

    MATH  Google Scholar 

  • A. E. Lichko, Psychopathies and Accentuations of Character of Teenagers, second edition, Leningrad, USSR, “Medicine”, 1983.

    Google Scholar 

  • M. A. Maloof, R. S. Michalski, “A Method for Partial Memory Incremental Learning and its Application to Computer Intrusion Detection”, Proceedings of the 7 th IEEE International Conference on Tools with Artificial Intelligence, Washington, DC, USA, pp. 392–397, 1995.

    Google Scholar 

  • H. Mannila, and K.-J. Räihä, “On the Complexity of Inferring Functional Dependencies”, Discrete Applied Mathematics, Vol. 40, pp. 237–243, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Mannila, and K.-J. Räihä, “Algorithm for Inferring Functional Dependencies”. Data & Knowledge Engineering, Vol. 12, pp. 83–99, 1994.

    Article  MATH  Google Scholar 

  • I. A. Megretskaya, “Construction of Natural Classification Tests for Knowledge Base Generation”, in: The Problem of the Expert System Application in the National Economy, Kishinev, Moldavia, pp. 89–93, 1988.

    Google Scholar 

  • R. S. Michalski, and J. B. Larsen, “Selection of Most Representative Training Examples and Incremental Generation of VL1 Hypotheses: the Underlying Methodology and the Description of Programs ESEL and AQII”, Report No. 78–867, Dep. of Comp. Science, Univ. of Illinois at Urbana-Champaign, IL, USA, 1978.

    Google Scholar 

  • R. S. Michalski, “Knowledge Acquisition through Conceptual Clustering: a Theoretical Framework and an Algorithm for Partitioning Data into Conjunctive Concepts”, Int. J. Policy Anal Inform. Systems, Vol. 4, No. 3, pp. 219–244, 1980.

    MathSciNet  Google Scholar 

  • R. S. Michalski, “A Theory and Methodology of Inductive Learning”, Artificial Intelligence, Vol. 20, pp.111–161, 1983.

    Article  MathSciNet  Google Scholar 

  • R. S. Michalski, and A. Ram, “Learning as Goal-Driven Inference”, in: Goal-Driven Learning, Ram, A., and Leake, D. B. (Eds), MIT Press/Bradford Books, Cambridge, MA, USA, 1995.

    Google Scholar 

  • J. S. Mille, The System of Logic, Russian Publishing Company “Book Affair”: Moscow, Russia, 1900.

    Google Scholar 

  • X. A. Naidenova, V. N. Syrbu, “Classification and Pattern Recognition Logic in Connection with the Problem of Forming and Using Knowledge in Expert Systems”, Theses of Papers of Republican Scientific-Technical Conference “Interactive Systems and Their Practical Application”, Mathematical Institute with Computer Center, Kishinev, Moldavia, pp. 10–13, 1984.

    Google Scholar 

  • X. A. Naidenova, J. G. Polegaeva, “A Model of Human Reasoning for Deciphering Forest’s Images and its Implementation on Computer”, Theses of Papers and Reports of Schoolseminar “Semiotic Aspects of the Formalization of Intellectual Activity”, Kutaisy, Georgia Soviet Socialist Republic, pp. 49–52, 1985a.

    Google Scholar 

  • X. A. Naidenova, J. G. Polegaeva, “The Project of Expert System GID KLARA — Geological Interpretation of Data Based on Classification and Pattern Recognition”, Report I-A VIII.2 10-3/35, “Testing and Mastering Experimental Patterns of Flying (Aircraft) and Surface Spectrometry Apparatus, Working out Methods of Automated Processing Multi-Spectral Information for Geological Goals”, All Union Scientific Research Institute of Remote Sensing Methods for Geology, 1985b.

    Google Scholar 

  • X. A. Naidenova, J. G. Polegaeva, “An Algorithm of Finding the Best Diagnostic Tests”, The 4-th All Union Conference “Application of Mathematical Logic Methods”, Theses of Papers, Mintz, G; E, Lorents, P. P. (Eds), Institute of Cybernetics, National Acad. of Sciences of Estonia, Tallinn, Estonia, pp. 63–67, 1986.

    Google Scholar 

  • X. A. Naidenova, “Machine Learning As a Diagnostic Task”, in: “Knowledge-Dialogue-Solution”, Materials of the Short-Term Scientific Seminar, Saint-Petersburg, Russia, editor Arefiev, I., pp.26–36, 1992.

    Google Scholar 

  • X. A. Naidenova, J. G. Polegaeva, J. E. Iserlis, “The System of Knowledge Acquisition Based on Constructing the Best Diagnostic Classification Tests”, Proceedings of International Conference “Knowledge-Dialog-Solution”, Jalta, Ukraine, Vol. 1, pp. 85–95, 1995a.

    Google Scholar 

  • X. A. Naidenova, M. V. Plaksin, V. L. Shagalov, “Inductive Inferring All Good Classification Tests”, Proceedings of International Conference “Knowledge-Dialog-Solution”, Jalta, Ukraine, Vol. 1, pp.79–84, 1995b.

    Google Scholar 

  • X. A. Naidenova, “Reducing Machine Learning Tasks to the Approximation of a Given Classification on a Given Set of Examples”, Proceedings of the 5-th National Conference at Artificial Intelligence, Kazan, Tatarstan, Vol. 1, pp. 275–279, 1996.

    Google Scholar 

  • X. A. Naidenova, A. E. Ermakov, “The Decomposition of Algorithms of Inferring Good Diagnostic Tests”, Proceedings of the 4-th International Conference “Computer — Aided Design of Discrete Devices” (CAD DD’ 2001), Institute of Engineering Cybernetics, National Academy of Sciences of Belarus, editor A. Zakrevskij, Minsk, Belarus, Vol. 3, pp. 61–69, 2001.

    Google Scholar 

  • S. Nieto, E. Triantaphyllou, J. Chen, and T. W. Liao, “An Incremental Learning Algorithm for Constructing Boolean Function from Positive and Negative Examples”, Computers and Operations Researches, Vol. 29, No. 12, pp. 1677–1700, 2002.

    Article  MathSciNet  Google Scholar 

  • O. Ore, “Galois Connexions”, Trans. Amer. Math. Society, Vol. 55, No. 1, pp. 493–513, 1944.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Piaget, La genèse des Structures Logiques Elémentaires, Neuchâtel, 1959.

    Google Scholar 

  • J. R. Quinlan, and R. L. Rivest, “Inferring Decision Trees Using the Minimum Description Length Principle”, Information and Computation, Vol. 80, No. 3, pp. 227–248, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Rasiova, An Algebraic Approach to Non-Classical Logic, Studies in Logic, Vol. 78, North-Holland Publishing Company, Amsterdam-London, 1974.

    Google Scholar 

  • J. Riguet, “Relations Binaires, Fermetures, Correspondences de Galois”, Bull. Soc. Math., France, Vol. 76, No 3, pp. 114–155, 1948.

    MATH  MathSciNet  Google Scholar 

  • S. Salzberg, “A Nearest Hyper Rectangle Learning Method”, Machine Learning, Vol. 6, pp. 277–309, 1991.

    Google Scholar 

  • J. Shreider, “Algebra of Classification”, Proceedings of VINITI, Series 2, No. 9, pp. 3–6, 1974.

    Google Scholar 

  • E. Sperner, “Eine satz über Untermengen einer Endlichen Menge”. Mat. Z, Vol. 27, No. 11, pp. 544–548, 1928.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Wille, “Concept Lattices and Conceptual Knowledge System”, Computer Math. Appl., Vol. 23, No. 6–9, pp. 493–515, 1992.

    Article  MATH  Google Scholar 

  • X. Wu, and W. Lo, “Multi-Layer Incremental Induction”, Proceedings of the 5-th Pacific Rim International Conference on Artificial Intelligence, Springer-Verlag, pp. 24–32, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naidenova, X. (2006). An Incremental Learning Algorithm for Inferring Logical Rules from Examples in the Framework of the Common Reasoning Process. In: Triantaphyllou, E., Felici, G. (eds) Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Massive Computing, vol 6. Springer, Boston, MA . https://doi.org/10.1007/0-387-34296-6_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-34296-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34294-8

  • Online ISBN: 978-0-387-34296-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics