Skip to main content

Part of the book series: Massive Computing ((MACO,volume 6))

Abstract

This chapter focuses on one particular class of data mining methodologies that expresses the mined knowledge in the form of fuzzy If-Then rules or fuzzy decision trees that can be easily understood by a human. Past studies on generating fuzzy If-Then rules (mostly from exemplar crisp data and a few from exemplar fuzzy data) are grouped into six major categories: grid partitioning, fuzzy clustering, genetic algorithms, neural networks, hybrid methods, and others. The representative method in each category is detailed. The latest improvements and advancements in each category are also reviewed. Similarly, past studies on generating fuzzy decision trees (from exemplar nominal and/or numeric data as well as from exemplar fuzzy data) are surveyed. The essence of each method is presented. Moreover, we discuss selected studies that address most of the necessary conditions for a fuzzy model to be interpretable and highlight areas for future studies. To give an idea of where fuzzy modeling methods have been applied, major application areas are also summarized.

Triantaphyllou, E. and G. Felici (Eds.), Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques, Massive Computing Series, Springer, Heidelberg, Germany, pp. 495–550, 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S. and Lan, M.-S., “A method for fuzzy rules extraction directly from numerical data and its application to pattern recognition,” IEEE Trans. Fuzzy Systems, 3(1), 1995, 18–28.

    Article  MathSciNet  Google Scholar 

  2. Azeem, M. F., Hanmandlu, M., and Ahmad, N., “Generalization of adaptive neuro-fuzzy inference systems,” IEEE Trans. Neural Networks, 11(6), 2000, 1332–1346.

    Article  Google Scholar 

  3. Behloul, F., Lelieveldt, B. P. F., Boudraa, A., and Reiber, J. H. C, “Optimal design of radial basis function neural networks for fuzzy rule extraction in high dimensional data,” Pattern Recognition, 35, 2002, 659–675.

    Article  MATH  Google Scholar 

  4. Boyen, X. and Wehenkel, L., “Automatic induction of fuzzy decision trees and its application to power system security assessment,” Fuzzy Sets and Systems, 102, 1999, 3–19.

    Article  Google Scholar 

  5. Carse, B., Fogarty, T. C, and Munro, A., “Evolving fuzzy rule based controllers using genetic algorithms,” Fuzzy Sets and Systems, 80, 1996, 273–293.

    Article  Google Scholar 

  6. Castro, J. L. and Zurita, J. M., “An inductive learning algorithm in fuzzy systems,” Fuzzy Sets and Systems, 89, 1997, 193–203.

    Article  Google Scholar 

  7. Castro, J. L., Castro-Schez, J. J., and Zurita, J. M., “Learning maximal structure rules in fuzzy logic for knowledge acquisition in expert systems,” Fuzzy Sets and Systems, 101, 1999, 331–342.

    Article  MATH  MathSciNet  Google Scholar 

  8. Castro, J. L., Castro-Schez, J. J., and Zurita, J. M, “Use of a fuzzy machine learning technique in the knowledge acquisition process,” Fuzzy Sets and Systems, 123, 2001, 307–320.

    Article  MATH  MathSciNet  Google Scholar 

  9. Chakraborty, D. and Pal, N. R., “Integrated feature analysis and fuzzy rule-based system identification in a neuro-fuzzy paradigm,” IEEE Trans. Systems, Man, Cybernetics-Part B: Cybernetics, 31(3), 2001, 391–400.

    Article  Google Scholar 

  10. Chan, K. C, Lin, G. C. I., and Leong, S. S., “A more accurate adaptive fuzzy inference system”, Computers in Industry, 26, 1995, 61–73.

    Article  Google Scholar 

  11. Chen, J.-L. and Chang, J.-Y., “Fuzzy perceptron neural networks for classifiers with numerical data and linguistic rules as inputs,” IEEE Trans. On Fuzzy Systems, 8(6), 2000, 730–745.

    Article  MathSciNet  Google Scholar 

  12. Chen, M.Y. and Likens, D. A., “A systematic neuro-fuzzy modeling framework with application to material property prediction,” IEE Trans. Systems, Man, Cybernetics-Part B: Cybernetics, 31(5), 2001, 781–790.

    Article  Google Scholar 

  13. Chen, S.-M. and Yeh, M.-S., “Generating fuzzy rules from relational database systems for estimating null values,” Cybernetics and Systems, 28, 1997, 695–723.

    Article  MATH  Google Scholar 

  14. Chi, Z. and Yan, H., “ID3-derived fuzzy rules and optimized defuzzification for handwritten numeral recognition,” IEEE Trans. On Fuzzy Systems, 4(1), 1996, 24–31.

    Article  Google Scholar 

  15. Chiang, I.-J. and Hsu, J. Y., “Fuzzy classification trees for data analysis,” Fuzzy Sets and Systems, 130, 2002, 87–99.

    Article  MATH  MathSciNet  Google Scholar 

  16. Cho, H.-J., Cho, K.-B., and Wang, B.-H., “Fuzzy-PID hybrid control: automatic rule generation using genetic algorithms”, Fuzzy Sets and Systems, 92, 1997, 305–316.

    Article  MathSciNet  Google Scholar 

  17. Cordón, O. and Herrera, F., “A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge base from examples,” Int. J. of Approximate Reasoning, 17, 1997, 369–407.

    Article  MATH  Google Scholar 

  18. Cordón, O. and Herrera, F., “A proposal for improving the accuracy of linguistic modeling”, IEEE Trans. Fuzzy Systems, 8(3), 2000, 335–344.

    Article  Google Scholar 

  19. Cordón, O. and Herrera, F., “Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems,” Fuzzy Sets and Systems, 118, 2001, 235–255.

    Article  MATH  MathSciNet  Google Scholar 

  20. Cordón, O., Herrera, F., and Lozano, M., “On the combination of fuzzy logic and evolutionary computation: A short review and bibliography,” in Fuzzy Evolutionary Computation, W. Pedrycz, Ed., Norwell, MA: Kluwer, 1997, 33–56.

    Google Scholar 

  21. Cordón, O., del Jusus, M. J., and Herrera, F., “Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods,” Int. J. Intelligent Systems, 13, 1998, 1025–1053.

    Article  Google Scholar 

  22. Delgado, M., Gómez-Skarmeta, A. F., and Martin, F., “A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling”, IEEE Trans. Fuzzy Systems, 5(2), 1997, 223–232.

    Article  Google Scholar 

  23. Delgado, M. and Gonzalez, A., “An inductive learning procedure to identify fuzzy systems”, Fuzzy Sets and Systems, 55, 1993, 121–132.

    Article  MathSciNet  Google Scholar 

  24. Dong, M. and Kothari, R., “Look-ahead based fuzzy decision tree induction,” IEEE Trans. On Fuzzy Systems, 9(3), 2001, 461–468.

    Article  Google Scholar 

  25. Dueck, G. and Scheuer, T., “Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing,” J. Comput. Phys., 90, 1990, 161–175.

    Article  MATH  MathSciNet  Google Scholar 

  26. Emami, M. R., Türksen, I. B., and Goldenberg, A. A., “Development of a systematic methodology of fuzzy logic modeling”, IEEE Trans. Fuzzy Systems, 6(3), 1998, 346–361.

    Article  MATH  Google Scholar 

  27. Enbutsu, I., Baba, K., and Hara, N., “Fuzzy rule extraction from a multilayereed neural network”, Proc. Of IJCNN’ 91, Seattle, 1991, II-461–465.

    Google Scholar 

  28. Espinosa, J. and Vandewalle, J., “Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm”, IEEE Trans. Fuzzy Systems, 8(5), 2000, 591–600.

    Article  Google Scholar 

  29. Gómez-Skarmeta, A. F. and Jiménez, F., “Fuzzy modeling with hybrid systems”, Fuzzy Sets and Systems, 104, 1999, 199–208.

    Article  Google Scholar 

  30. Guillaume, S., “Designing fuzzy inference systems from data: an interpretability-oriented review”, IEEE Trans. Fuzzy Systems, 9(3), 2001, 426–443.

    Article  MathSciNet  Google Scholar 

  31. Heider H. and Drabe, T., “A cascaded genetic algorithm for improving fuzzy system design,” Int. J. Approximate Reasoning, 17, 1997, 351–368.

    Article  MATH  Google Scholar 

  32. Herrera, F., Lozano, M. and Verdegay, J. L., “A learning process for fuzzy control rules using genetic algorithms”, Fuzzy Sets and Systems, 100, 1998, 143–158.

    Article  Google Scholar 

  33. Hiraga, I., Furuhashi, T., Uchikawa, Y., and Nakayama, S., “An acquisition of operator’s rules for collision avoidance using fuzzy neural networks,” IEEE Trans. Fuzzy Systems, 3(3), 1995, 280–287.

    Article  Google Scholar 

  34. Hirota, K. and Pedrycz, W., “Directional fuzzy clustering and its application to fuzzy modeling,” Fuzzy Sets and Systems, 80, 1996, 315–326.

    Article  MathSciNet  Google Scholar 

  35. Homaifar, A. and McCormick, E., “Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms”, IEEE Trans. Fuzzy Systems, 3(2), 1995, 129–138.

    Article  Google Scholar 

  36. Hong, J. R., “AE1: extension matrix approximate method for general covering problem,” Int. J. Comput. Inform. Sci, 14(6), 1985, 421–437.

    Article  MATH  Google Scholar 

  37. Hong, T. P. and Chen, J.-B., “Finding relevant attributes and membership functions,” Fuzzy Sets and Systems, 103, 1999, 389–404.

    Article  Google Scholar 

  38. Hong, T. P. and Chen, J.-B., “Processing individual fuzzy attributes for fuzzy rule induction,” Fuzzy Sets and Systems, 112, 2000, 127–140.

    Article  Google Scholar 

  39. Huang, S. H. and Xing, H., “Extract intelligent and concise fuzzy rules from neural networks,” Fuzzy Sets and Systems, 132, 2002, 233–243.

    Article  MATH  MathSciNet  Google Scholar 

  40. Ishibuchi, H., Murata, T., and Türksen, I. B., “Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems,” Fuzzy Sets and Systems, 89, 1997, 135–150.

    Article  Google Scholar 

  41. Ishibuchi, H., Nozaki, K., and Tanaka, H., “Distributed representation of fuzzy rules and its application to pattern recognition”, Fuzzy Sets and Systems, 52, 1992, 21–32.

    Article  Google Scholar 

  42. Ishibuchi, H., Nozaki, K., and Tanaka, H., “Efficient fuzzy partition of pattern space for classification problems”, Fuzzy Sets and Systems, 59, 1993, 295–304.

    Article  Google Scholar 

  43. Ishibuchi, H., Nozaki, K., Yamamoto, N. and Tanaka, H., “Selecting fuzzy If-Then rules for classification problems using genetic algorithms,” IEEE Trans. Fuzzy Systems, 3(3), 1995, 260–270.

    Article  Google Scholar 

  44. Ishihashi, H., Shirai, T., Nagasaka, K., and Miyoshi, T., “Neuro-fuzzy ID3: a method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning,” Fuzzy Sets and Systems, 81, 1996, 157–167.

    Article  MathSciNet  Google Scholar 

  45. Janikow, C. Z., “A genetic algorithm method for optimizing fuzzy decision trees,” Information Sciences, 89, 1996, 275–296.

    Article  MathSciNet  Google Scholar 

  46. Janikow, C. Z., “Fuzzy decision trees: issues and methods,” IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, 28(1), 1998, 1–14.

    Article  Google Scholar 

  47. Jeng, B., Heng, Y.-M., and Liang, T. P., “FILM: a fuzzy inductive learning method for automated knowledge acquisition,” Decision Support Systems, 21, 1997, 61–73.

    Article  Google Scholar 

  48. Kang, S.-J., Woo, C.-H., Hwang, H.-S., Woo, K. B., “Evolutionary design of fuzzy rule base for nonlinear system modeling and control,” IEEE Trans. Fuzzy Systems, 8(1), 2000, 37–44.

    Article  Google Scholar 

  49. Kaur, D. and Lin, B., “On the design of neural-fuzzy control system”, Int. J. of Intelligent Systems, 13, 1998, 11–26.

    Article  MATH  Google Scholar 

  50. Kbir, M. A., Benkirane, H., Maalmi, K., and Benslimane, R., “Hierarchical fuzzy partition for pattern classification with fuzzy If-Then rules”, Pattern Recognition Letters, 21, 2000, 503–509.

    Article  Google Scholar 

  51. Kilic, K, Sproule, B. A., Türksen, I. B., and Naranjo, C. A., “Fuzzy system modeling in pharmacology: an improved algorithm,” Fuzzy Sets and Systems, 130, 2002, 253–264.

    Article  MATH  MathSciNet  Google Scholar 

  52. Kim, C. J., “An algorithmic approach for fuzzy inference,” IEEE Trans. Fuzzy Systems, 5(4), 1997, 585–598.

    Article  Google Scholar 

  53. Klawonn, F. and Kruse, R., “Constructing a fuzzy controller from data”, Fuzzy Sets and Systems, 85, 1997, 177–193.

    Article  MathSciNet  Google Scholar 

  54. Lekova, A., Mikhailov, L., Boyadjiev, D., and Nabout, A., “Redundant fuzzy rules exclusion by genetic algorithms”, Fuzzy Sets and Systems, 100, 1998, 235–243.

    Article  Google Scholar 

  55. Li, R. P., Mukaidono, M., and Türksen, I. B., “A fuzzy neural network for pattern recognition and feature selection,” Fuzzy Sets and Systems, 130, 2002, 101–108.

    MATH  MathSciNet  Google Scholar 

  56. Liao, T. W., “A fuzzy c-medians variant for the generation of fuzzy term sets,” J. Intelligent Systems, 17(1), 2001.

    Google Scholar 

  57. Liao, T. W., Celmins, A. K., and Hammell, R. J., II, “A fuzzy c-means variant for the generation of fuzzy term sets,” Fuzzy Sets and Systems, 135, 2003, 241–257.

    Article  MATH  MathSciNet  Google Scholar 

  58. Lin, C.-T. and Lee, C. S. G., “Neural network-based fuzzy logic control and decision system”, IEEE Trans. Computing, 40(12), 1991, 1320–1336.

    Article  MathSciNet  Google Scholar 

  59. Lin, C.-T. and Lu, Y.-C., “A neural fuzzy system with linguistic teaching signals,” IEEE Trans. Fuzzy Systems, 3(2), 1995, 169–189.

    Article  Google Scholar 

  60. Lin, Y. and Cunningham, G. A., II, “A new approach to fuzzy-neural system modeling,” IEEE Trans. Fuzzy Systems, 3, 1995, 190–198.

    Article  Google Scholar 

  61. Lin, Y., Cunningham, G. A., II, and Coggeshall, S. V., “Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network”, IEEE Trans. Fuzzy Systems, 5(4), 1997, 614–621.

    Article  Google Scholar 

  62. Mamdani, E. H. and Assilian, S., “An experiment in linguistic synthesis with a fuzzy logic controller”, Int. J. Man-Mach. Stud., 7, 1975, 1–13.

    Article  MATH  Google Scholar 

  63. Mikhailov, L., Lekova, A., and Nabout, A., “Method for fuzzy rule extraction from numerical data”, Complex Systems, 1, 1996, 23–33.

    MATH  Google Scholar 

  64. Mitra, S., De, R. K., and Pal, S. K., “Knowledge-based fuzzy MLP for classification and rule generation”, IEEE Trans. Neural Networks, 8(6), 1997, 1338–1350.

    Article  Google Scholar 

  65. Mitra, S. and Hayashi, Y., “Neuro-fuzzy rule generation: survey in soft computing framework,” IEEE Trans. Neural Networks, 11(3), 2000, 748–768.

    Article  Google Scholar 

  66. Nauck, D., Klawonn, F., and Kruse, R., Foundations of Neuro-Fuzzy Systems. Chichester, U. K.: Wiley, 1997.

    Google Scholar 

  67. Nauck, D. and Kruse, R., “A neuro-fuzzy method to learn fuzzy classification rules from data,” Fuzzy Sets and Systems, 89, 1997, 277–288.

    Article  MathSciNet  Google Scholar 

  68. Nawa, N. E. and Furuhashi, T., “Fuzzy system parameters discovery by bacterial evolutionary algorithm,” IEEE Trans. Fuzzy Systems, 7(5), 1999, 608–616.

    Article  Google Scholar 

  69. Nozaki, K., Ishibuchi, H., and Tanaka, H., “Adaptive fuzzy rule-based classification systems”, IEEE Trans. Fuzzy Systems, 4(3), 1996, 238–250.

    Article  Google Scholar 

  70. Pal, N. R. and Chakraborty, S., “Fuzzy rule extraction from ID3-type decision trees for real data,” IEEE Trans. On Systems, Man, and Cybernetics-Part B: Cybernetics, 31(5), 2001, 745–754.

    Article  Google Scholar 

  71. Pedrycz, W. “Fuzzy set technology in knowledge discovery,” Fuzzy Sets and Systems, 98, 1998, 279–290.

    Article  Google Scholar 

  72. Peña-Reyes, C. A. and Sipper, M., “Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling”, IEEE Trans. On Fuzzy Systems, 9(5), 2001, 727–737.

    Article  Google Scholar 

  73. Quek, C. and Tung, W. L., “A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture”, Pattern Recognition Letters, 22, 2001, 941–958.

    Article  MATH  Google Scholar 

  74. Quek, C. and Zhou, R. W., “The POP learning algorithms: reducing work in identifying fuzzy rules,” Neural Networks, 14, 2001, 1431–1445.

    Article  Google Scholar 

  75. Quinlan, J. R., “Induction of decision trees,” Machine Learning, 1(1), 1986, 81–106.

    Google Scholar 

  76. Ravi, V., Reddy, P. J., and Zimmermann, H.-J., “Fuzzy rule base generation for classification and its minimization via modified threshold accepting”, Fuzzy Sets and Systems, 120, 2001, 271–279.

    Article  MATH  MathSciNet  Google Scholar 

  77. Russo, M., “FuGeNeSys-A fuzzy genetic neural system for fuzzy modeling”, IEEE Trans. Fuzzy Systems, 6(3), 1998, 373–388.

    Article  Google Scholar 

  78. Russo, M., “Genetic fuzzy learning”, IEEE Trans. Evolutionary Computation, 4(3), 2000, 259–273.

    Article  Google Scholar 

  79. Rutkowska, D., “On generating fuzzy rules by an evolutionary approach”, Cybernetics and Systems, 29, 1998, 391–407.

    Article  MATH  Google Scholar 

  80. Safavian, S. R. and Landgrebe, D., “A survey of decision tree classifier methodology,” IEEE Trans. Systems Man Cybernet, 21, 1991, 600–674.

    Article  MathSciNet  Google Scholar 

  81. Shi, Y., Eberhart, R., and Chen Y., “Implementation of evolutionary fuzzy systems,” IEEE Trans. On Fuzzy Systems, 7(2), 1999, 109–119.

    Article  Google Scholar 

  82. Su, M.-C. and Chang, H.-T., “Application of neural networks incorporated with real-valued genetic algorithms in knowledge acquisition,” Fuzzy Sets and Systems, 112, 2000, 85–97.

    Article  Google Scholar 

  83. Sugeno, M. and Kang, G. T., “Fuzzy modeling and control of multiplayer incinerator”, Fuzzy Sets and Systems, 18, 1986, 329–346.

    Article  MATH  Google Scholar 

  84. Sugeno, M. and Yasukawa, T., “A fuzzy-logic-based approach to qualitative modeling”, IEEE Trans. Fuzzy Systems, 1(1), 1993, 7–31.

    Article  Google Scholar 

  85. Surmann, H. and Selenschtschitow, A., “Automatic generation of fuzzy logic rule bases: Examples I,” Proc. Of the NF2002: First Int. ICSC Conf. on Neuro-fuzzy Technologies, Cuba, Jan. 16–19, 2002, 75–81.

    Google Scholar 

  86. Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its application to modeling and control”, IEEE Trans. Syst. Man, Cybernet., 15, 1985, 116–132.

    MATH  Google Scholar 

  87. Tarng, Y. S., Yeh, Z. M., and Nian, C. Y., “Genetic synthesis of fuzzy logic controllers in turning”, Fuzzy Sets and Systems, 83, 1996, 301–310.

    Article  Google Scholar 

  88. Tsang, E. C. C., Wang, X. Z., and Yeung, D. S., “Improving learning accuracy of fuzzy decision trees by hybrid neural networks,” IEEE Trans. On Fuzzy Systems, 8(5), 2000, 601–614.

    Article  Google Scholar 

  89. Umanol, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., and Kinoshita, J., “Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems,” in Proc. IEEE Int. Conf. on Fuzzy Systems, June 26–29, 1994, 2113–2118.

    Google Scholar 

  90. Wang, X. Z., Chen, B., Qian, G., and Ye, F., “On the optimization of fuzzy decision trees,” Fuzzy Sets and Systems, 112, 2000, 117–125.

    Article  MathSciNet  Google Scholar 

  91. Wang, X. and Hong, J., “On the handling of fuzziness for continuous-valued attributes in decision tree generation,” Fuzzy Sets and Systems, 99, 1998, 283–290.

    Article  MATH  MathSciNet  Google Scholar 

  92. Wang, C.-H., Liu, J.-F., Hong, T.-P., and Tseng, S.-S., “A fuzzy inductive learning strategy for modular rules,” Fuzzy Sets and Systems, 103, 1999, 91–105.

    Article  Google Scholar 

  93. Wang, L.-X. and Mendel, J. M., “Generating fuzzy rules by learning from examples”, IEEE Trans. Syst. Man Cybernet., 22(6), 1992, 1414–1427.

    Article  MathSciNet  Google Scholar 

  94. Wang, X. Z., Wang, Y. D., Xu, X. F., Ling, W. D., and Yeung, D. S., “A new approach to fuzzy rule generation: fuzzy extension matrix,” Fuzzy Sets and Systems, 123, 2001a, 291–306.

    Article  MATH  MathSciNet  Google Scholar 

  95. Wang, X. Z., Yeung, D. S., and Tsang, E. C. C., “A comparative study on heuristic algorithms for generating fuzzy decision trees,” IEEE Trans. On Systems, Man, and Cybernetics-Part B: Cybernetics, 31(2), 2001b, 215–226.

    Article  Google Scholar 

  96. Wu, T.-P. and Chen, S.-M., “A new method for constructing membership functions and fuzzy rules from training examples”, IEEE Trans. Syst. Man, Cybernet.-Part B: Cybernetics, 29(1), 1999, 25–40.

    MATH  Google Scholar 

  97. Wu, X., “Fuzzy interpretation of discretized intervals,” IEEE Trans. On Fuzzy Systems, 7(6), 1999, 753–759.

    Article  Google Scholar 

  98. Xiong, N. and Litz, L., “Reduction of fuzzy control rules by means of premise learning — method and case study,” Fuzzy Sets and Systems, 132, 2002, 217–231.

    Article  MATH  MathSciNet  Google Scholar 

  99. Yang, Y., Xu, X., and Zhang, W., “Real-time stable self-learning FNN controller using genetic algorithm,” Fuzzy Sets and Systems, 100, 1998, 173–178.

    Article  Google Scholar 

  100. Yao, J., Dash, M., Tan, S. T., and Liu, H., “Entropy-based fuzzy clustering and fuzzy modeling,” Fuzzy Sets and Systems, 113, 2000, 381–388.

    Article  MATH  Google Scholar 

  101. Yeung, D. S., Wang, X. Z., and Tsang, E. C. C., “Learning weighted fuzzy rules from examples with mixed attributes by fuzzy decision trees,” in Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, Tokyo, Japan, Oct. 12–15, 1999, 349–354.

    Google Scholar 

  102. Yuan, Y. and Shaw, M. J., “Induction of fuzzy decision trees,” Fuzzy Sets and Systems, 69, 1995, 125–139.

    Article  MathSciNet  Google Scholar 

  103. Zadeh, L. A., “Outline of a new approach to the analysis of complex systems and decision processes”, IEEE Trans. Syst. Man, Cybernet., SMC-3, 28–44, 1973. Zadeh, L. A., “Fuzzy sets”, Information and Control, 8, 1965, 338–353.

    Google Scholar 

  104. Zhang, J. and Knoll, A., “Designing fuzzy controllers by rapid learning,” Fuzzy Sets and Systems, 101, 1999, 287–301.

    Article  MATH  Google Scholar 

  105. Zhang, Y.-Q and Kandel, A., “Compression and expansion of fuzzy rule bases by using crisp-fuzzy neural networks,” Cybernetics and Systems, 29, 1998, 6–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liao, T.W. (2006). Mining Human Interpretable Knowledge with Fuzzy Modeling Methods: An Overview. In: Triantaphyllou, E., Felici, G. (eds) Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques. Massive Computing, vol 6. Springer, Boston, MA . https://doi.org/10.1007/0-387-34296-6_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-34296-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34294-8

  • Online ISBN: 978-0-387-34296-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics