Skip to main content

The Role of the Complement System in the Pathogenesis of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

  • Conference paper
Current Topics in Complement

Part of the book series: Advances in Experimental Medicine and Biology ((volume 586))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. W. F. Hickey, Leukocyte traffic in the central nervous system: the participants and their roles, Semin Immunol 11(2), 125–137 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. C. Lucchinetti, W. Bruck, J. Parisi, B. Scheithauer, M. Rodriguez, and H. Lassmann, Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination, Ann Neurol 47(6), 707–717 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. G. Fazekas and T. Tabira, What transgenic and knockout mouse models teach us about experimental autoimmune encephalomyelitis, Rev Immunogenet 2(1), 115–132 (2000).

    PubMed  CAS  Google Scholar 

  4. P. F. Stahel, D. Nadal, H. W. Pfister, P. M. Paradisis, and S. R. Barnum, Complement C3 and factor B cerebrospinal fluid concentrations in bacterial and aseptic meningitis, Lancet 349(9069), 1886–1887 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. B. P. Morgan and P. Gasque, Expression of complement in the brain: role in health and disease, Immunol Today 17(10), 461–466 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. P. A. Andrews, J. E. Finn, C. M. Lloyd, W. Zhou, P. W. Mathieson, and S. H. Sacks, Expression and tissue localization of donor-specific complement C3 synthesized in human renal allografts, Eur J Immunol 25(4), 1087–1093 (1995).

    PubMed  CAS  Google Scholar 

  7. J. R. Pratt, S. A. Basheer, and S. H. Sacks, Local synthesis of complement component C3 regulates acute renal transplant rejection, Nat Med 8(6), 582–587 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. M. E. Sanders, C. L. Koski, D. Robbins, M. L. Shin, M. M. Frank, and K. A. Joiner, Activated terminal complement in cerebrospinal fluid in Guillain-Barre syndrome and multiple sclerosis, J Immunol 136(12), 4456–4459 (1986).

    PubMed  CAS  Google Scholar 

  9. J. C. Cyong, S. S. Witkin, B. Rieger, E. Barbarese, R. A. Good, and N. K. Day, Antibody-independent complement activation by myelin via the classical complement pathway, J Exp Med 155(2), 587–598 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. P. Vanguri, C. L. Koski, B. Silverman, and M. L. Shin, Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies, Proc Natl Acad Sci USA 79(10), 3290–3294 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. C. L. Koski, P. Vanguri, and M. L. Shin, Activation of the alternative pathway of complement by human peripheral nerve myelin, J Immunol 134(3), 1810–1814 (1985).

    PubMed  CAS  Google Scholar 

  12. S. K. Singhrao, J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque, Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis, Am J Pathol 157(3), 905–918 (2000).

    PubMed  CAS  Google Scholar 

  13. C. Linington, B. P. Morgan, N. J. Scolding, P. Wilkins, S. Piddlesden, and D. A. Compston, The role of complement in the pathogenesis of experimental allergic encephalomyelitis, Brain 112(Pt 4), 895–911 (1989).

    Article  PubMed  Google Scholar 

  14. K. Kerekes, J. Prechl, Z. Bajtay, M. Jozsi, and A. Erdei, A further link between innate and adaptive immunity: C3 deposition on antigen-presenting cells enhances the proliferation of antigen-specific T cells, Int Immunol 10(12), 1923–1930 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. B. Dietzschold, W. Schwaeble, M. K. Schafer, D. C. Hooper, Y. M. Zehng, F. Petry, H. Sheng, T. Fink, M. Loos, H. Koprowski, and., Expression of C1q, a subcomponent of the rat complement system, is dramatically enhanced in brains of rats with either Borna disease or experimental allergic encephalomyelitis, J Neurol Sci 130(1), 11–16 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. T. G. Johns and C. C. Bernard, Binding of complement component Clq to myelin oligodendrocyte glycoprotein: a novel mechanism for regulating CNS inflammation, Mol Immunol 34(1), 33–38 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. D. M. Calida, C. Constantinescu, E. Purev, G. X. Zhang, E. S. Ventura, E. Lavi, and A. Rostami, Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis in mice, J Immunol 166(2), 723–726 (2001).

    PubMed  CAS  Google Scholar 

  18. S. Nataf, S. L. Carroll, R. A. Wetsel, A. J. Szalai, and S. R. Barnum, Attenuation of experimental autoimmune demyelination in complement-deficient mice, J Immunol 165(10), 5867–5873 (2000).

    PubMed  CAS  Google Scholar 

  19. L. J. van der Laan, S. R. Ruuls, K. S. Weber, I. J. Lodder, E. A. Dopp, and C. D. Dijkstra, Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide, J Neuroimmunol 70(2), 145–152 (1996).

    Article  PubMed  Google Scholar 

  20. F. Reichert and S. Rotshenker, Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages, Neurobiol Dis 12(1), 65–72 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. L. A. Boos, A. J. Szalai, and S. R. Barnum, Murine complement C4 is not required for experimental autoimmune encephalomyelitis, Glia 49(1), 158–160 (2005).

    Article  PubMed  Google Scholar 

  22. S. H. Weerth, H. Rus, M. L. Shin, and C. S. Raine, Complement C5 in experimental autoimmune encephalomyelitis (EAE) facilitates remyelination and prevents gliosis, Am J Pathol 163(3), 1069–1080 (2003).

    PubMed  CAS  Google Scholar 

  23. G. T. Tran, S. J. Hodgkinson, N. Carter, M. Killingsworth, S. T. Spicer, and B. M. Hall, Attenuation of experimental allergic encephalomyelitis in complement component 6-deficient rats is associated with reduced complement C9 deposition, Pselectin expression, and cellular infiltrate in spinal cords, J Immunol 168(9), 4293–4300 (2002).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Terényi, N., Prechl, J., Erdei, A. (2006). The Role of the Complement System in the Pathogenesis of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. In: Lambris, J.D. (eds) Current Topics in Complement. Advances in Experimental Medicine and Biology, vol 586. Springer, Boston, MA. https://doi.org/10.1007/0-387-34134-X_12

Download citation

Publish with us

Policies and ethics