The Role of Computation in Complex Regulatory Networks

Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

Biological phenomena differ significantly from physical phenomena. At the heart of this distinction is the fact that biological entities have computational abilities and thus they are inherently difficult to predict. This is the reason why simplified models that provide the minimal requirements for computation turn out to be very useful to study networks of many components. In this chapter, we briefly review the dynamical aspects of models of regulatory networks, discussing their most salient features, and we also show how these models can give clues about the way in which networks may organize their capacity to evolve, by providing simple examples of the implementation of robustness and modularity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hopfield JJ. Physics, computation, and why biology looks so different. J Theor Biol 1994; 171:53–60.CrossRefGoogle Scholar
  2. 2.
    Hartwell LH, Hopfield JJ, Leibler S et al. From molecular to modular cell biology. Nature 1999; 402:C47–C52.CrossRefGoogle Scholar
  3. 3.
    Gould SJ. The Stucture of Evolutionary Theory. Belknap: Harvard Press, 2003.Google Scholar
  4. 4.
    Wolfram S. Undecidability and intractability in theoretical physics. Phys Rev Lett 1985; 54:735–738.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Davidson EH et al. A genomic regulatory network for development. Science 2002; 295:1669–1678.CrossRefADSGoogle Scholar
  6. 6.
    Lee TI et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002; 298(5594):799–804.CrossRefADSGoogle Scholar
  7. 7.
    Bell AC, West AG, Felsenfeld G. Insulators and boundaries: Versatile regulatory elements in the eukaryotic genome. Science 2001; 291:447–450.CrossRefADSGoogle Scholar
  8. 8.
    Albert B, Johnson A, Lewis J et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002.Google Scholar
  9. 9.
    Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the drosophila segment polarity genes. J Theor Biol 2003; 223:1–18.CrossRefMathSciNetGoogle Scholar
  10. 10.
    von Dassow G, Meir E, Munro E. The segment polarity network is a robust developmental module. Nature 2000; 406:188–192.CrossRefADSGoogle Scholar
  11. 11.
    Barkai N, Leibler S. Robustness in simple biochemical networks. Nature 1997; 387:913–917.CrossRefADSGoogle Scholar
  12. 12.
    Solé RV, Ferándndez P, Kauffman SA. Adaptive walks in a gene network model of morphogenesis: Insights into the Cambrian explosion. IJDB 2003.Google Scholar
  13. 13.
    Hasty J, McMillen D, Isaacs F et al. Computational studies on gene regulatory networks: In numero molecular biology. Nature Rev Gen 2001; 2:268–279.CrossRefGoogle Scholar
  14. 14.
    Butler D. Computing 2010: From black holes to biology. Nature 1999; 402:C67–C70.CrossRefADSGoogle Scholar
  15. 15.
    Sipser M. Introduction to the Theory of Computation. PWS Publishing Company, 1997.Google Scholar
  16. 16.
    McAdams HH, Shapiro L. Circuit simulation of genetic networks. Science 1995; 269:650–656.CrossRefADSGoogle Scholar
  17. 17.
    Bray D. Protein molecules as computational elements in living cells. Nature 1995; 376:307–312.CrossRefADSGoogle Scholar
  18. 18.
    Sveiczer A, Csikasz-Nagy A, Gyorffy B et al. Modeling the fission yeast cell cycle: Quantized cycle times in weel-cdc25delta mutant cells. PNAS 2000; 97:7865–7870.CrossRefADSGoogle Scholar
  19. 19.
    Tyson JJ, Chen K, Novak B. Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2001; 2:908–916.CrossRefGoogle Scholar
  20. 20.
    Anderson PW. More is different. Science 1972; 177:393–396.CrossRefADSGoogle Scholar
  21. 21.
    Hayes JP. Principles of Digital Logic Design. Reading: Addison-Wesley, 1993.Google Scholar
  22. 22.
    Aldana-González M, Coppersmith S, Kadanoff LP. Boolean dynamics with random couplings. In: Kaplan E, Marsden JE, Sreenivasan KR, eds. Perspectives and Problems in Nonlinear Science. A Celebratory Volume in Honor of Lawrence Sirovich. Springer: Applied Mathematical Sciences, 2003.Google Scholar
  23. 23.
    Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969; 22:437–467.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Kauffman SA. The Origins of Order. New York: Oxford University Press, 1993.Google Scholar
  25. 25.
    Wuensche A. Genomic regulation modeled as a network with basins of attraction. In: Altman RB, Dunker AK, Hunter L, Klien TE, eds. Pacific Symposium on Biocomputi’ 98. Singapore: World Scientific, 1998.Google Scholar
  26. 26.
    Stanley HE. Introduction to Phase Transitions and Critical Phenomena. New York: Oxford Uni-versity Press, 1971.Google Scholar
  27. 27.
    Luque B, Solé RV. Phase transitions in random networks: Simple analytic determination of critical points. Phys Rev E 1997; 55:257–260.CrossRefADSGoogle Scholar
  28. 28.
    Dorogovtsev SN, Mendes JFF. Evolution of Networks. New York: Oxford University Press, 2003.MATHCrossRefGoogle Scholar
  29. 29.
    Langton C. Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 1990; 42:12–37.CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    McAdams HH, Arkin A. It’s a noisy business! genetic regulation at the nanomolar scale. Trends Genet 1999; 15(2):65–69.CrossRefGoogle Scholar
  31. 31.
    Solé RV, Delgado J. Universal computation in fluid neural networks. Complexity 1996; 2(2):49–56.CrossRefGoogle Scholar
  32. 32.
    Wolfram S. Universality and complexity in cellular automata. Physica D 1984; 10:1–35.CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Dhar A, Lakdawala P, Mandal G et al. Role of initial conditions in the classification of the rule space of cellular automata dynamics. Phys Rev E 1995; 51:3032–3037.CrossRefADSGoogle Scholar
  34. 34.
    Aldana M, Cluzel P. A natural class of robust networks. PNAS 2003; 100:8710–8714.CrossRefADSGoogle Scholar
  35. 35.
    Mitchell M, Hraber PT, Crutchfield JP. Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 1993; 7:89–130.MATHGoogle Scholar
  36. 36.
    von Neumann J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Shannon C, McCarthy J, eds. Automata Studies. Princeton: Princeton University Press, 1956.Google Scholar
  37. 37.
    Elowitz MB, Levine AJ, Siggia ED et al. Stochastic gene expression in a single cell. Science 2002; 297:1183–1186.CrossRefADSGoogle Scholar
  38. 38.
    Blake WJ, Kaern M, Cantor CR et al. Noise in eukaryotic gene expression. Nature 2003; 422:633–637.CrossRefADSGoogle Scholar
  39. 39.
    Smith V, Chou KN, Lashkari D et al. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 1996; 274:2069–2074.CrossRefADSGoogle Scholar
  40. 40.
    Nowak MA, Boerlijst MC, Cooke J et al. Evolution of genetic redundancy. Nature 1997; 388:167–171.CrossRefADSGoogle Scholar
  41. 41.
    Gerald M, Edelman GM, Gaily JA. Degeneracy and complexity in biological systems. PNAS 2001; 98:13763–13768.CrossRefADSGoogle Scholar
  42. 42.
    Tononi G, Sporns O, Edelman GM. Measures of degeneracy and redundancy in biological net-works. PNAS 1999; 96:3257–3262.CrossRefADSGoogle Scholar
  43. 43.
    Wagner A. Robustness against mutations in genetic networks of yeast. Nat Genet 2000; 24:355–361.CrossRefGoogle Scholar
  44. 44.
    Kirschner M, Gerhart J. Evolvability. PNAS 1998; 95:8420–8427.CrossRefADSGoogle Scholar
  45. 45.
    Wagner GP, Altenberg L. Complex adaptations and the evolution of evolvability. Evolution 1996; 50:967–976.CrossRefGoogle Scholar
  46. 46.
    Schuster P. How does complexity arise in evolution. Complexity 1996; 2:22–30.CrossRefGoogle Scholar
  47. 47.
    Schuster P, Fontana W, Stadler P et al. From sequences to shapes and back: A case study in RNA secondary structures. Proc Roy Soc London B 1994; 255:279–284.CrossRefADSGoogle Scholar
  48. 48.
    von Dassow G, Munro E. Modularity in animal development and evolution: Elements of a conceptual framework for evodevo. J Exp Zool 1999; 406(6792):188–192.Google Scholar
  49. 49.
    Solé RV, Salazar I, Garcia-Fernández J. Common pattern formation, modularity and phase transitions in a gene network model of morphogenesis. Physica A 2002; 305:640–647.MATHCrossRefADSGoogle Scholar
  50. 50.
    Salazar-Ciudad I, Newman SA, Solé RV. Phenotypic and dynamical transitions in model genetic networks i: Emergence of patterns and genotype-phenotype relationships. Evol Dev 2001; 3(2):84–94.CrossRefGoogle Scholar
  51. 51.
    Wagner GP. Homologues, natural kinds, and the evolution of modularity. Am Zool 1996; 36:36–43.Google Scholar
  52. 52.
    Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science 2003; 300:445–452.CrossRefGoogle Scholar
  53. 53.
    Buchler NE, Gerland U, Hwa T. On schemes of combinatorial transcription logic. Proc Natl Acad Sci USA 2003; 100:5136–5141.CrossRefADSGoogle Scholar
  54. 54.
    Girvan M, Newman MEJ. Community structure in social and biological networks. PNAS 2002; 99:8271–8276.CrossRefMathSciNetGoogle Scholar
  55. 55.
    Ihmels J, Friedlander G, Bergmann S et al. Revealing modular organization in the yeast transcriptional network. Nat Genet 2002; 31:370–377.Google Scholar
  56. 56.
    Zhou H. Distance, dissimilarity index, and network community structure. Phys Rev E 2003; 67:061901.CrossRefADSGoogle Scholar
  57. 57.
    Ravasz E, Somera AL, Mongru DA et al. Hierarchical organization of modularity in metabolic networks. Science 2002; 297:1551–1555.CrossRefADSGoogle Scholar

Copyright information

© Eurekah.com and Springer Science+Business Media 2006

Authors and Affiliations

  1. 1.ICREA-Complex Systems LabUniversitat Pompeu Fabra (GRIB)BarcelonaSpain
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations