Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems. Continuous Piecewise Linear Approximations

  • E. Casas
  • M. Mateos
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 202)


We discuss error estimates for the numerical analysis of Neumann boundary control problems. We present some known results about piecewise constant approximations of the control and introduce some new results about continuous piecewise linear approximations. We obtain the rates of convergence in L 2(Γ). Error estimates in the uniform norm are also obtained. We also discuss the semidiscretization approach as well as the improvement of the error estimates by making an extra assumption over the set of points corresponding to the active control constraints.


Boundary control semilinear elliptic equation numerical approximation error estimates 


  1. [1]
    N. Arada, E. Casas, and F. Tröltzsch. Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl., 23(2):201–229, 2002.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994.Google Scholar
  3. [3]
    E. Casas. Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. AiCM, 2005.Google Scholar
  4. [4]
    E. Casas and M. Mateos. Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim., 40(5): 1431–1454 (electronic), 2002.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    E. Casas and M. Mateos. Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math., 21(l):67–100, 2002. Special issue in memory of Jacques-Louis Lions.MathSciNetGoogle Scholar
  6. [6]
    E. Casas and M. Mateos. Error estimates for the numerical approximation of Neumann control problems. Submitted.Google Scholar
  7. [7]
    E. Casas, M. Mateos, and F. Tröltzsch. Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Computational Optimization and Applications, 31(2): 193–219, 2005.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    E. Casas and J.-P. Raymond. The stability in W s,p (Γ) spaces of the L 2-projections on some convex sets of finite element function spaces. To appear.Google Scholar
  9. [9]
    M. Hinze. A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl., 30(l):45–61, 2005.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Meyer and A. Rösen. Superconvergence properties of optimal control problems. SIAM Journal on Control and Optimization, 43(3):970–985, 2005.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • E. Casas
    • 1
  • M. Mateos
    • 2
  1. 1.Dpto. de Matemática Aplicada y Ciencias de la Computatión, E.T.S.I. Industriales y de TelecomunicaciónUniversidad de CantabriaSantanderSpain
  2. 2.Dpto. de Matemáticas, E.P.S.I. de GijónUniversidad de OviedoGijónSpain

Personalised recommendations