A Uniqueness Theorem for a Classical Nonlinear Shallow Shell Model

  • J. Cagnol
  • C. G. Lebiedzik
  • R. J. Marchand
Conference paper
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 202)


The main goal of this paper is to establish the uniqueness of solutions of finite energy for a classical dynamic nonlinear thin shallow shell model with clamped boundary conditions. The static representation of the model is an extension of a Koiter shallow shell model. Until now, this has been an open problem in the literature. The primary difficulty is due to a lack of regularity in the nonlinear terms. Indeed the nonlinear terms are not locally Lipshitz with respect to the energy norm. The proof of the theorem relies on sharp PDE estimates that are used to prove uniqueness in a lower topology than the space of finite energy.


Nonlinear shells weak solutions uniqueness 


  1. [1]
    M. Bernadou. Méthodes d’Eléments Finis pour les Problémes de Coques Minces. Masson, Paris, 1994.Google Scholar
  2. [2]
    M. Bernadou, P.G. Ciarlet and B. Miara. Existence theorems for two-dimensional linear shell theories. Technical Report 1771. Unité deRecherche INRIA-Rocquencourt, 1992.Google Scholar
  3. [3]
    M. Bernadou, B. Lalanne. On the approximation of free vibration modes of a general thin shell application to turbine blades. In The Third European Conference on Mathematics in Industry. J. Manley, et al. Eds., Kluwer Academic Publishers and B. G. Teubner Stuttgart, 257–264, 1990.Google Scholar
  4. [4]
    M. Bernadou and J.T. Oden. An existence theorem for a class of nonlinear shallow shell problems. J. Math Pures Appl. 60:285–308, 1981.MATHMathSciNetGoogle Scholar
  5. [5]
    P.G. Ciarlet. A two-dimensional non-linear shell model of Koiter’s type. Jean Leray’ 99 Conference Proceedings. Kluwer Academic Publishers, 437–449, 2003.Google Scholar
  6. [6]
    M.C. Delfour and J.P. Zolésio. Tangential differential equations for dynamical thin/shallow shells. J. Differential Equations. 128:125–167, 1995.CrossRefGoogle Scholar
  7. [7]
    W.T. Koiter. On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch. B: 1–54, 1966.MathSciNetGoogle Scholar
  8. [8]
    I. Lasiecka. Uniform stabilizability of a full von Karman system with nonlinear boundary feedback. S1AM J. Control Optim. 36: 1376–1422, 1998.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    I. Lasiecka, R. Marchand. Riccati equations arising in acoustic structure interactions with curved walls. Journal of Dynamics and Control. 8:269–292, 1998.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    V.I. Sedenko. On uniqueness of the generalized solutions of initial boundary value problems for Marguerre-Vlasov nonlinear oscillations of shallow shells. Russian Izv. 1–2,1994.Google Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • J. Cagnol
    • 1
  • C. G. Lebiedzik
    • 2
  • R. J. Marchand
    • 3
  1. 1.ESILV, DER CSPôle Universitaire Léonard de VinciParis La Defense CédexFrance
  2. 2.Wayne State UniversityDetroitUSA
  3. 3.Slippery Rock UniversitySlippery RockUSA

Personalised recommendations