Advertisement

On a Variational Problem of Ulam

  • S. Villa
Conference paper
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 202)

Abstract

Using the concept of well-posedness under perturbations we give an answer to the following question posed by Stanislaw Ulam : “when it is true that solutions of two problems in the calculus of variations which corresponds to “close” physical data must be close to each other?”(“A collection of mathematical problems”, 1960).

keyword

well-posedness integral functionals bounded Hausdorff convergence 

References

  1. [1]
    H. Attouch and R. Wets. Quantitative stability of variational systems. I. The epigraphical distance. Trans. Amer. Math. Soc., 328(2):695–729, 1991.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Attouch and R. Wets. Quantitative stability of variational systems. II. A framework for nonlinear conditioning. SIAM J. Optim., 3(2):359–381, 1993.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    G. Beer. Topologies on closed and closed convex sets, volume 268 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.Google Scholar
  4. [4]
    N. A. Bobylëv. On a problem of s. ulam. Nonlinear Anal., 24(3):309–322, 1995.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Z. Chbani. Caractérisation de la convergence d’intégrates définies à partir d’opérateurs elliptiques par la convergence des coefficients. Sém. Anal. Convexe, 21:Exp. No. 12, 14, 1991.Google Scholar
  6. [6]
    A. L. Dontchev and T. Zolezzi. Well-posed optimization problems, volume 1543 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.MATHGoogle Scholar
  7. [7]
    I. Ekeland and R. Temam. Convex analysis and variational problems. North-Holland Publishing Co., Amsterdam, 1976. Translated from the French, Studies in Mathematics and its Applications, Vol. 1.MATHGoogle Scholar
  8. [8]
    J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, pages 49–52, 1902.Google Scholar
  9. [9]
    A. D. Ioffe and A. J. Zaslavski. Variational principles and well-posedness in optimization and calculus of variations. SIAM J. Control Optim., 38(2):566–581 (electronic), 2000.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    R. Lucchetti. Some aspects of the connections between Hadamard and Tyhonov well-posedness of convex programs. Boll. Un. Mat. Ital. C (6), l(l):337–345, 1982.MathSciNetGoogle Scholar
  11. [11]
    R. T. Rockafellar and R. J.-B. Wets. Variational systems, an introduction. In Multifunctions and integrands (Catania, 1983), volume 1091 of Lecture Notes in Math., pages 1–54. Springer, Berlin, 1984.Google Scholar
  12. [12]
    M. A. Sychëv. Necessary and sufficient conditions in theorems of semicontinuity and convergence with a functional. Mat. Sb., 186(6):77–108, 1995.MATHMathSciNetGoogle Scholar
  13. [13]
    M. A. Sychëv. On the continuous dependence of the solutions of the simplest variational problems on the integrand. Siberian Math. J., 36(2):379–388, 1995.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience Publishers, New York-London, 1960.MATHGoogle Scholar
  15. [15]
    S. Villa. Bounded hausdorff convergence of integral functionals and related well-posedness properties, preprint.Google Scholar
  16. [16]
    S. Villa. AW-convergence and well-posedness of non convex functions. J. Convex Anal., 10(2):351–364, 2003.MATHMathSciNetGoogle Scholar
  17. [17]
    S. Villa. Well-posedness of nonconvex integral functionals. SIAM J. Control Optim., 43(4): 1298–1312 (electronic), 2004/05.MathSciNetCrossRefGoogle Scholar
  18. [18]
    S. Villa. Well-posed problems of the calculus of variations. 2005.Google Scholar
  19. [19]
    A. Visintin. Strong convergence results related to strict convexity. Comm. Partial Differential Equations, 9(5):439–466, 1984.MATHMathSciNetGoogle Scholar
  20. [20]
    T. Zolezzi. Well-posed optimization problems for integral functionals. J. Optim. Theory AppL, 31(3):417–430, 1980.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    T. Zolezzi. Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal.,25(5):437–53, 1995.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    T. Zolezzi. Wellposed problems of the calculus of variations for nonconvex integrals. J. Convex Anal., 2(l–2):375–383, 1995.MATHMathSciNetGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • S. Villa
    • 1
  1. 1.DIMAUniversità di GenovaGenovaItaly

Personalised recommendations