Linear Degenerate Parabolic Equations in Bounded Domains: Controllability and Observability

  • P. Cannarsa
  • G. Fragnelli
  • J. Vancostenoble
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 202)


In this paper we study controllability properties of linear degenerate parabolic equations. Due to degeneracy, classical null controllability results do not hold in general. Thus we investigate results of’ regional null controllability’, showing that we can drive the solution to rest at time T on a subset of the space domain, contained in the set where the equation is nondegenerate.


linear degenerate equations regional null controllability persistent regional null controllability 


  1. [1]
    P. Albano, P. Cannarsa. Lectures on Carleman Estimates for elliptic operators and applications. In preparation.Google Scholar
  2. [2]
    M. Campiti, G. Metafune, D. Pallara. Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57:1–36, 1998.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    P. Cannarsa, G. Fragnelli. Controllability of semilinear weakly degenerate parabolic equations. In preparation.Google Scholar
  4. [4]
    P. Cannarsa, G. Fragnelli, J. Vancostenoble. Regional controllability of semilinear degenerate parabolic equations in bounded domains. To appear in J. Math. Anal. Appl. Google Scholar
  5. [5]
    P. Cannarsa, P. Martinez, J. Vancostenoble. Nulle contrôlabilité régionale pour des equations de la chaleur dégénérées. Comptes Rendus Mécanique 330:397–401, 2002.MATHCrossRefGoogle Scholar
  6. [6]
    P. Cannarsa, P. Martinez, J. Vancostenoble. Persistent regional controllability for a class of degenerate parabolic equations, Commun. Pure Appl. Anal. 3:607–635, 2004.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.J. Engel, R. Nagel. One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, 2000.Google Scholar
  8. [8]
    A. V. Fursikov, O. Yu. Imanuvilov. Controllability of evolution equations. Lecture Notes Series, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University 34, 1996.Google Scholar
  9. [9]
    I. Lasiecka, R. Triggiani. Carleman estimates and exact boundary controllability for a system of coupled, non conservative second order hyperbolic equations. Partial Differential Equations Methods in Control and Shape Analysis, Lectures Notes in Pure and Applied Math. 188, Marcel Dekker, New York, 1994.Google Scholar
  10. [10]
    G. Lebeau, L. Robbiano. Contrüle exact de 1’équation de la chaleur. Comm. P.D.E. 20:335–356, 1995.MATHMathSciNetGoogle Scholar
  11. [11]
    P. Martinez, J. P. Raymond, J. Vancostenoble. Regional null controllability for a linearized Crocco type equation. SIAM J. Control Optim. 42:709–728, 2003.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    D. Tataru. Carleman estimates, unique continuation and controllability for anizotropic PDE’s. Contemporary Mathematics 209:267–279, 1997.MATHMathSciNetGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • P. Cannarsa
    • 1
  • G. Fragnelli
    • 1
  • J. Vancostenoble
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Laboratoire M.l.R, U.M.R. C.N.R.S. 5640Université Paul Sabatier Toulouse IIIToulouse Cedex4France

Personalised recommendations