Modelling and Fast Numerical Methods for Granular Flows

  • E. Ferrari
  • G. Naldi
  • G. Toscani
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 202)

Abstract

In this work we discuss the development of fast algorithms for the inelastic Boltzmann equation describing the collisional motion of a granular gas. In such systems the collisions between particles occur in an inelastic way and are characterized by a coefficient of restitution which in the general case depends on the relative velocity of the collision. In the quasi-elastic approximation the granular operator is replaced by the sum of an elastic Boltzmann operator and a nonlinear friction term. Fast numerical methods based on a suitable spectral representation of the approximated model are then presented.

keywords

Inelastic Boltzmann equation Spectral methods Granular gases Fast algorithms 

References

  1. [1]
    N. Bellomo, M. Esteban, M. Lachowicz. Nonlinear kinetic equations with dissipative collisions. Appl. Math. Letters 8:46–52, 1995.MathSciNetGoogle Scholar
  2. [2]
    D. Benedetto, E. Caglioti, M. Pulvirenti. A kinetic equation for granular media. M2AN Math. Model. Numer. Anal. 31:615–641, 1997.MATHMathSciNetGoogle Scholar
  3. [3]
    D. Benedetto, E. Caglioti, J.A. Carrillo, M. Pulvirenti. A non-maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys. 91:979–990, 1998.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.V. Bobylev, J.A. Carrillo, I.M. Gamba. On some properties of kinetic and hydrodynamic equations for inelastic interactions J. Statist. Phys. 98:743–773, 2000.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    N.V. Brilliantov, T. Pöschel. Granular gases with impact-velocity dependent restitution coefficient. In Granular Gases: 100–124, Lecture Notes in Physics, Vol. 564, Springer-Verlag, Berlin, 2000.Google Scholar
  6. [6]
    J.A. Carrillo, C. Cercignani, I.M. Gamba. Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E (3) 62:7700–7707, 2000.MathSciNetGoogle Scholar
  7. [7]
    C. Cercignani. Recent developments in the mechanism of granular materials. Fisica Matematica e ingegneria delle strutture, Pitagora Editrice, Bologna, 1995.Google Scholar
  8. [8]
    C. Cercignani, R. Illner, M. Pulvirenti. The mathematical theory of dilute gases. Applied Mathematical Sciences, Vol. 106, Springer-Verlag, New-York, 1994.Google Scholar
  9. [9]
    F. Filbet, C. Mouhot, L. Pareschi. Solving the Boltzmann equation in N log2 N. SISC (to appear), 2005.Google Scholar
  10. [10]
    F. Filbet, C. Mouhot, L. Pareschi. Work in progress.Google Scholar
  11. [11]
    I. Goldhirsch. Scales and kinetics of granular flows. Chaos 9:659–672, 1999.MATHCrossRefGoogle Scholar
  12. [12]
    S. McNamara, W.R. Young. Kinetics of a one-dimensional granular medium in the quasielastic limit. Phys. Fluids A 5:34–45, 1993.MathSciNetCrossRefGoogle Scholar
  13. [13]
    C. Mouhot, L. Pareschi. Fast algorithms for computing the Boltzmann collision operator. Math. Comp. (to appear), 2005.Google Scholar
  14. [14]
    G. Naldi, L. Pareschi, G. Toscani. Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit. M2AN Math. Model. Numer. Anal. 37:73–90,2003.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Pareschi, G. Russo. Numerical solution of the Boltzmann equation. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37:1217–1245, 2000.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    L. Pareschi, G. Toscani. Modelling and numerics of granular gases. In Modeling and computational methods for kinetic equations: 259–285, Series Model. Simul. Sci. Eng. Technol., Birkhauser, Boston, 2004.Google Scholar
  17. [17]
    G. Toscani. One-dimensional kinetic models of granular flows, M2AN Math. Model. Numer. Anal. 34:1277–1292, 2000.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    G. Toscani. Kinetic and hydrodinamic models of nearly elastic granular flows, Monatsch. Math. 142:179–192, 2004.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • E. Ferrari
    • 1
  • G. Naldi
    • 2
  • G. Toscani
    • 3
  1. 1.Department of MathematicsUniversity of FerraraFerraraItaly
  2. 2.Department of MathematicsUniversity of MilanMilanItaly
  3. 3.Department of MathematicsUniversity of PaviaPaviaItaly

Personalised recommendations