Data Fusion and Filtering Via Calculus of Variations

  • L. Fatone
  • P. Maponi
  • F. Zirilli
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 202)


We study the problem of urban areas detection from satellite images. In particular, we consider two types of satellite images: SAR (Synthetic Aperture Radar) images and optical images. We describe a simple algorithm for the detection of urban areas. We show that the performance of the detection algorithm can be improved using a fusion procedure of the SAR and optical images considered. The fusion algorithm presented in this paper is based on a simple use of ideas taken from calculus of variations and it makes possible to do together the filtering and the data fusion steps. Some numerical examples obtained processing real data are reported at the end of the paper. In the website http: //web. unicam. it/ matinf /f atone/wl several animations relative to these numerical examples can be seen.


Data fusion Optimization algorithms Urban areas detection 


  1. [1]
    Special issue on data fusion. Proceedings of the IEEE. 85:1–208, 1997.Google Scholar
  2. [2]
    A.R. Conn, N.I.M. Gould, Ph.L. Toint. LANCELOT: A Fortran Package for Large Scale Nonlinear Optimization (Release A). Berlin, Springer-Verlag, 1992.MATHGoogle Scholar
  3. [3]
    M. Costantini, A. Farina, F. Zirilli. The fusion of different resolution SAR images. Proceedings of the IEEE. 85:139–146, 1997CrossRefGoogle Scholar
  4. [4]
    L. Fatone, P. Maponi, F. Zirilli. Fusion of SAR/Optical images to detect urban areas. Proceedings of the IEEE/1SPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Roma Italy. 217–221, 2001.Google Scholar
  5. [5]
    L. Fatone, P. Maponi, F. Zirilli. An image fusion approach to the numerical inversion of multifrequency electromagnetic scattering data. Inverse Problems. 17:1689–1702, 2001.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Fatone, P. Maponi, F. Zirilli. Data fusion and nonlinear optimization. SIAM News. 35(l):4; 10, 2002.Google Scholar
  7. [7]
    C. Gouinaud, F. Tupin, H. Maitre. Potential and use of radar images for characterization and detection of urban areas. IGARSS’96. Lincoln, Nebraska, USA. 1:474–476, 1996.Google Scholar
  8. [8]
    K. Kneöaurek, M. Ivanovic, J. Machac, D.A. Weber. Medical image registration. Euro-physics News. 31:5–8, 2000.CrossRefGoogle Scholar
  9. [9]
    C.J. Oliver. Information from SAR Images. Journal of Physics D-Applied Physics. 24:1493–1514, 1991.CrossRefGoogle Scholar
  10. [10]
    F. Roddier. The effects of atmospheric turbulence in optical astronomy. In Progress in Optics, North-Holland. Wolf, E. (Ed.) 19:281–376, 1981.Google Scholar
  11. [11]
    A.H. Soldberg. Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images. IEEE Transactions on Geoscience and Remote Sensing. 32:768–776, 1994.CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • L. Fatone
    • 1
  • P. Maponi
    • 2
  • F. Zirilli
    • 3
  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversita di Modena e Reggio EmiliaModena (MO)Italy
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CamerinoCamerino (MC)Italy
  3. 3.Dipartimento di Matematica “G. Castelnuovo”Universita di Roma “La Sapienza”RomaItaly

Personalised recommendations