Skip to main content

The Keratin K6 Minifamily of Genes

  • Chapter
Intermediate Filaments
  • 432 Accesses

Abstract

Keratin K6 constitutes a special case among the keratin intermediate filaments. It is constitutively expressed in several stratified epithelia, but is also induced by several stimuli, many of which are related to hyperproliferation. In addition, this keratin is, unlike others, encoded by several genes, which give rise to similar but not identical forms. In recent years, considerable advances have been made in the identification of new K6 genes and the understanding of the function of K6. Here I review the present knowledge about the human, murine and bovine keratin K6 genes, in particular with regard to the differences in sequence among the different isoforms and their different regulation. Hints about the possible K6 biological function that are suggested by the study of murine models of overexpression and gene inactivation, as well as by the study of human diseases due to mutations in K6, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fsuchs E, Weber K. Intermediate filaments: Structure, dynamics, function, and disease. Annu Rev Biochem 1994; 63:345–382.

    Google Scholar 

  2. Moll R, Franke WW, Schiller DL et al. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31(1):11–24.

    Article  PubMed  CAS  Google Scholar 

  3. Eichner R, Bonitz P, Sun TT. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J Cell Biol 1984; 98(4):1388–1396.

    Article  PubMed  CAS  Google Scholar 

  4. Quinlan RA, Schiller DL, Hatzfeld M et al. Patterns of expression and organization of cytokeratin intermediate filaments. Ann NY Acad Sci 1985; 455:282–306.

    Article  PubMed  CAS  Google Scholar 

  5. Rentrop M, Knapp B, Winter H et al. Differential localization of distinct keratin mRNA-species in mouse tongue epithelium by in situ hybridization with specific cDNA probes. J Cell Biol 1986; 103(6 Pt 2):2583–2591.

    Article  PubMed  CAS  Google Scholar 

  6. Stark HJ, Breitkreutz D, Limat A et al. Keratins of the human hair follicle: “Hyperproliferative” keratins consistently expressed in outer root sheath cells in vivo and in vitro. Differentiation 1987; 35(3):236–248.

    PubMed  CAS  Google Scholar 

  7. Stoler A, Kopan R, Duvic M et al. Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol 1988; 107(2):427–446.

    Article  PubMed  CAS  Google Scholar 

  8. Mansbridge JN, Knapp AM. Changes in keratinocyte maturation during wound healing. J Invest Dermatol 1987; 89(3):253–263.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss RA, Eichner R, Sun TT. Monoclonal antibody analysis of keratin expression in epidermal diseases: A 48-and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol 1984; 98(4):1397–1406.

    Article  PubMed  CAS  Google Scholar 

  10. Schweizer J, Furstenberger G, Winter H. Selective suppression of two postnatally acquired 70 kD and 65 kD keratin proteins during continuous treatment of adult mouse tail epidermis with vita min A. J Invest Dermatol 1987; 89(2):125–131.

    Article  PubMed  CAS  Google Scholar 

  11. Molloy CJ, Laskin JD. Specific alterations in keratin biosynthesis in mouse epidermis in vivo and in explant culture following a single exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 1987; 47(17):4674–4680.

    PubMed  CAS  Google Scholar 

  12. Navarro JM, Casatorres J, Jorcano JL. Elements controlling the expression and induction of the skin hyperproliferation-associated keratin K6. J Biol Chem 1995; 270(36):21362–21367.

    Article  PubMed  CAS  Google Scholar 

  13. Mahony D, Karunaratne S, Cam G et al. Analysis of mouse keratin 6a regulatory sequences in transgenic mice reveals constitutive, tissue-specific expression by a keratin 6a minigene. J Invest Dermatol 2000; 115(5):795–804.

    Article  PubMed  CAS  Google Scholar 

  14. Tyner AL, Eichman MJ, Fuchs E. The sequence of a type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes. Proc Natl Acad Sci USA 1985; 82(14):4683–4687.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi K, Paladini RD, Coulombe PA. Cloning and characterization of multiple human genes and cDNAs encoding highly related type II keratin 6 isoforms. J Biol Chem 1995; 270(31):18581–18592.

    Article  PubMed  CAS  Google Scholar 

  16. Hesse M, Magin TM, Weber K. Genes for intermediate filament proteins and the draft sequence of the human genome: Novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 2001; H4 (Pt 14):2569–2575.

    Google Scholar 

  17. Rothnagel JA, Seki T, Ogo M et al. The mouse keratin 6 isoforms are differentially expressed in the hair follicle, footpad, tongue and activated epidermis. Differentiation 1999; 65(2):119–130.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi K, Yan B, Yamanishi K et al. The two functional keratin 6 genes of mouse are differentially regulated and evolved independently from their human orthologs. Genomics 1998; 53(2):170–183.

    Article  PubMed  CAS  Google Scholar 

  19. Jorcano JL, Franz JK, Franke WW. Amino acid sequence diversity between bovine epidermal cytokeratin polypeptides of the basic (type II) subfamily as determined from cDNA clones. Differentiation 1984; 28(2):155–163.

    Article  PubMed  CAS  Google Scholar 

  20. Blessing M, Zentgraf H, Jorcano JL. Differentially expressed bovine cytokeratin genes. Analysis of gene linkage and evolutionary conservation of 5-upstream sequences. EMBO J 1987; 6(3):567–575.

    PubMed  CAS  Google Scholar 

  21. Langbein L, Rogers MA, Praetzel S et al. K6irs1, K6irs2, K6irs3, and K6irs4 represent the inner-root-sheath-specific type II epithelial keratins of the human hair follicle. J Invest Dermatol 2003; 120(4):512–522.

    Article  PubMed  CAS  Google Scholar 

  22. Langbein L, Rogers MA, Praetzel S et al. A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized huxley cells (Flugelzellen) of the human hair follicle. J Invest Dermatol 2002; 118(5):789–799.

    Article  PubMed  CAS  Google Scholar 

  23. Porter RM, Corden LD, Lunny DP et al. Keratin K6irs is specific to the inner root sheath of hair follicles in mice and humans. Br J Dermatol 2001; 145(4):558–568.

    Article  PubMed  CAS  Google Scholar 

  24. Aoki N, Sawada S, Rogers MA et al. A novel type II cytokeratin, mK6irs, is expressed in the Huxley and Henle layers of the mouse inner root sheath. J Invest Dermatol 2001; 116(3):359–365.

    Article  PubMed  CAS  Google Scholar 

  25. Winter H, Langbein L, Praetzel S et al. A novel human type II cytokeratin, K6hf, specifically expressed in the companion layer of the hair follicle. J Invest Dermatol 1998; 111(6):955–962.

    Article  PubMed  CAS  Google Scholar 

  26. Wojcik SM, Longley MA, Roop DR. Discovery of a novel murine keratin 6 (K6) isoform explains the absence of hair and nail defects in mice deficient for K6a and K6b. J Cell Biol 2001; 154(3):619–630.

    Article  PubMed  CAS  Google Scholar 

  27. Paramio JM, Segrelles C, Ruiz S et al. Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol Cell Biol 2001; 21(21):7449–7459.

    Article  PubMed  CAS  Google Scholar 

  28. Paramio JM, Casanova ML, Segrelles C et al. Modulation of cell proliferation by cytokeratins K10 and K16. Mol Cell Biol 1999; 19(4):3086–3094.

    PubMed  CAS  Google Scholar 

  29. Paladini RD, Coulombe PA. The functional diversity of epidermal keratins revealed by the partial rescue of the keratin 14 null phenotype by keratin 16. J Cell Biol 1999; 146(5):1185–1201.

    Article  PubMed  CAS  Google Scholar 

  30. Strausberg RL, Feingold EA, Grouse LH et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 2002; 99(26):16899–16903.

    Article  PubMed  Google Scholar 

  31. Yaffe MB, Leparc GG, Lai J et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 2001; 19(4):348–353.

    Article  PubMed  CAS  Google Scholar 

  32. Toivola DM, Zhou Q, English LS et al. Type II keratins are phosphorylated on a unique motifduring stress and mitosis in tissues and cultured cells. Mol Biol Cell 2002; 13(6):1857–1870.

    Article  PubMed  CAS  Google Scholar 

  33. Terrinoni A, Smith FJ, Didona B et al. Novel and recurrent mutations in the genes encoding keratins K6a, K16 and K17 in 13 cases of pachyonychia congenita. J Invest Dermatol 2001; 117(6):1391–1396.

    Article  PubMed  CAS  Google Scholar 

  34. Bowden PE, Haley JL, Kansky A et al. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nat Genet 1995; 10(3):363–365.

    Article  PubMed  CAS  Google Scholar 

  35. Lin MT, Levy ML, Bowden PE et al. Identification of sporadic mutations in the helix initiation motif of keratin 6 in two pachyonychia congenita patients: Further evidence for a mutational hot spot. Exp Dermatol 1999; 8(2):115–119.

    Article  PubMed  CAS  Google Scholar 

  36. Smith FJ, McKenna KE, Irvine AD et al. A mutation detection strategy for the human keratin 6A gene and novel missense mutations in two cases of pachyonychia congenita type 1. Exp Dermatol 1999; 8(2):109–114.

    Article  PubMed  CAS  Google Scholar 

  37. Yang JM, Nam K, Park KB et al. A novel H1 mutation in the keratin 1 chain in epidermolytic hyperkeratosis. J Invest Dermatol 1996; 107(3):439–441.

    Article  PubMed  CAS  Google Scholar 

  38. Wawersik M, Paladini RD, Noensie E et al. A proline residue in the alpha-helical rod domain of type I keratin 16 destabilizes keratin heterotetramers. J Biol Chem 1997; 272(51):32557–32565.

    Article  PubMed  CAS  Google Scholar 

  39. Ramirez A, Vidal M, Bravo A et al. Analysis of sequences controlling tissue-specific and hyperproliferation-related keratin 6 gene expression in transgenic mice. DNA Cell Biol 1998; 17(2):177–185.

    Article  PubMed  Google Scholar 

  40. Ramirez A, Vidal M, Bravo A et al. A 5′-upstream region of a bovine keratin 6 gene confers tissue-specific expression and hyperproliferation-related induction in transgenic mice. Proc Natl Acad Sci USA 1995; 92(11):4783–4787.

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi K, Coulombe PA. Defining a region of the human keratin 6a gene that confers inducible expression in stratified epithelia of transgenic mice. J Biol Chem 1997; 272(18):11979–11985.

    Article  PubMed  CAS  Google Scholar 

  42. Wojcik SM, Bundman DS, Roop DR. Delayed wound healing in keratin 6a knockout mice. Mol Cell Biol 2000; 20(14):5248–5255.

    Article  PubMed  CAS  Google Scholar 

  43. Bernerd F, Magnaldo T, Freedberg IM et al. Expression of the carcinoma-associated keratin K6 and the role of AP-1 proto-oncoproteins. Gene Expr 1993; 3(2):187–199.

    PubMed  CAS  Google Scholar 

  44. Leask A, Byrne C, Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci USA 1991; 88(18):7948–7952.

    Article  PubMed  CAS  Google Scholar 

  45. Komine M, Rao LS, Kaneko T et al. Inflammatory versus proliferative processes in epidermis. Tumor necrosis factor alpha induces K6b keratin synthesis through a transcriptional complex containing NFkappa B and C/EBPbeta. J Biol Chem 2000; 275(41):32077–32088.

    Article  PubMed  CAS  Google Scholar 

  46. Jiang CK, Magnaldo T, Ohtsuki M et al. Epidermal growth factor and transforming growth factor alpha specifically induce the activation-and hyperproliferation-associated keratins 6 and 16. Proc Natl Acad Sci USA 1993; 90(14):6786–6790.

    Article  PubMed  CAS  Google Scholar 

  47. Agarwal C, Efimova T, Welter JF et al. CCAAT/enhancer-binding proteins. A role in regulation of human involucrin promoter response to phorbol ester. J Biol Chem 1999; 274(10):6190–6194.

    Article  PubMed  CAS  Google Scholar 

  48. Smith FJ, Jonkman MF, van Goor H et al. A mutation in human keratin K6b produces a phenocopy of the K17 disorder pachyonychia congenita type 2. Hum Mol Genet 1998; 7(7):1143–1148.

    Article  PubMed  CAS  Google Scholar 

  49. Chapalain V, Winter H, Langbein L et al. Is the loose anagen hair syndrome a keratin disorder? A clinical and molecular study. Arch Dermatol 2002; 138(4):501–506.

    Article  PubMed  Google Scholar 

  50. Wong P, Colucci-Guyon E, Takahashi K et al. Introducing a null mutation in the mouse K6alpha and K6beta genes reveals their essential structural role in the oral mucosa. J Cell Biol 2000; 150(4):921–928.

    Article  PubMed  CAS  Google Scholar 

  51. Mazzalupo S, Wong P, Martin P et al. Role for keratins 6 and 17 during wound closure in embryonic mouse skin. Dev Dyn 2003; 226(2):356–365.

    Article  PubMed  CAS  Google Scholar 

  52. Wong P, Coulombe PA. Loss of keratin 6 (K6) proteins reveals a function for intermediatefila ments during wound repair. J Cell Biol 2003; 163(2):327–337.

    Article  PubMed  CAS  Google Scholar 

  53. Blessing M, Jorcano JL, Franke WW. Enhancer elements directing cell-type-specific expression of cytokeratin genes and changes of the epithelial cytoskeleton by transfections of hybrid cytokeratin genes. EMBO J 1989; 8(1):117–126.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Navarro, M. (2006). The Keratin K6 Minifamily of Genes. In: Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/0-387-33781-4_6

Download citation

Publish with us

Policies and ethics