Advertisement

Mutational Analyses of Fanconi Anemia Genes in Japanese Patients

  • Akira Tachibana
Chapter
  • 437 Downloads
Part of the Medical Intelligence Unit book series

Keywords

Base Substitution Fanconi Anemia Splice Acceptor Site Fanconi Anemia Patient Nonsense Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butturini A, Gale RP, Verlander PC et al. Hematologic abnormalities in fanconi anemia: An international fanconi anemia registry study. Blood 1994; 84:1650–1655.PubMedGoogle Scholar
  2. 2.
    Sasaki MS, Tonomura A. A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res 1973; 33:1829–1836.PubMedGoogle Scholar
  3. 3.
    Sasaki MS. Is Fanconi’s anaemia defective in a process essential to the repair of DNA cross links? Nature 1975; 257:501–503.PubMedCrossRefGoogle Scholar
  4. 4.
    Sasaki MS. Fanconi’s anemia: A condition possibly associated with a defective DNA repair. In: Hanawalt PC, Friedberg EC, Fox CF, eds. DNA repair mechanisms. New York: Academic Press, 1978:675–684.Google Scholar
  5. 5.
    Joenje H, Oostra AB, Wijker M et al. Evidence for at least eight Fanconi anemia genes. Am J Hum Genet 1997; 61:940–944.PubMedGoogle Scholar
  6. 6.
    Joenje H, Levitus M, Waisfisz Q et al. Complementation analysis in Fanconi anemia: Assignment of the reference FA-H patient to group A. Am J Hum Genet 2000; 67:759–762.PubMedCrossRefGoogle Scholar
  7. 7.
    Timmers C, Taniguchi T, Hejna J et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell 2001; 7:241–248.PubMedCrossRefGoogle Scholar
  8. 8.
    Savoia A, Zatterale A, Del Principe D et al. Fanconi anaemia in Italy: High prevalence of complementation group A in two geographic clusters. Hum Genet 1996; 97:599.PubMedGoogle Scholar
  9. 9.
    Jakobs PM, Fiddler-Odell E, Reifsteck C et al. Complementation group assignments in Fanconi anemia fibroblast cell lines from North America. Somat Cell Mol Genet 1997; 23:1–7.PubMedGoogle Scholar
  10. 10.
    Joenje H. Fanconi anaemia complementation groups in Germany and the Netherlands. Hum Genet 1996; 97:280–282.PubMedCrossRefGoogle Scholar
  11. 11.
    Strathdee CA, Gavish H, Shannon WR et al. Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature 1992; 356:763–767.PubMedCrossRefGoogle Scholar
  12. 12.
    The fanconi anemia/breast cancer consortium positional cloning of the fanconi anaemia group A gene. Nat Genet 1996; 14:324.Google Scholar
  13. 13.
    Lo Ten Foe JR, Rooimans MA, Bosnoyan-Collins L et al. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet 1996; 14:320–323.Google Scholar
  14. 14.
    de Winter JP, Waisfisz Q, Rooimans MA et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat Genet 1998; 20:281–283.PubMedCrossRefGoogle Scholar
  15. 15.
    de Winter JP, Leveille F, van Berkel CG et al. Isolation of a cDNA representing the Fanconi anemia complementation group E gene. Am J Hum Genet 2000; 67:1306–1308.PubMedGoogle Scholar
  16. 16.
    de Winter JP, Rooimans MA, van Der Weel L et al. The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nat Genet 2000; 24:15–16.PubMedCrossRefGoogle Scholar
  17. 17.
    Howlett NG, Taniguchi T, Olson S et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002; 297:606–609.PubMedCrossRefGoogle Scholar
  18. 18.
    Tachibana A, Kato T, Ejima Y et al. The FANCA gene in Japanese Fanconi anemia: Reports of eight novel mutations and analysis of sequence variability. Hum Mutat 1999; 13:237–244.PubMedCrossRefGoogle Scholar
  19. 19.
    Yamada T, Tachibana A, Shimizu T et al. Novel mutations of the FANCG gene causing alternative splicing in Japanese Fanconi anemia. J Hum Genet 2000; 45:159–166.PubMedCrossRefGoogle Scholar
  20. 20.
    Levran O, Erlich T, Magdalena N et al. Sequence variation in the Fanconi anemia gene FAA. Proc Natl Acad Sci USA 1997; 94:13051–13056.PubMedCrossRefGoogle Scholar
  21. 21.
    Savino M, Ianzano L, Strippoli P et al. Mutations of the Fanconi anemia group A gene (FAA) in Italian patients. Am J Hum Genet 1997; 61:1246–1253.PubMedCrossRefGoogle Scholar
  22. 22.
    Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: Sequence statistics and functional implications in gene expression. Nucleic Acids Res 1987; 15:7155–7174.PubMedCrossRefGoogle Scholar
  23. 23.
    Senapathy P, Shapiro MB, Harris NL. Splice junctions, branchpoint sites, and exons: Sequence statistics, identification, and applications to genome project. Methods in Enzymology. New York: Academic Press, 1990:252.Google Scholar
  24. 24.
    Demuth I, Wlodarski M, Tipping AJ et al. Spectrum of mutations in the Fanconi anaemia group G gene, FANCG/XRCC9. Eur J Hum Genet 2000; 8:861–868.PubMedCrossRefGoogle Scholar
  25. 25.
    Yagasaki H, Oda T, Adachi D et al. Two common founder mutations of the fanconi anemia group G gene FANCG/XRCC9 in the Japanese population. Hum Mutat 2003; 21:555.PubMedCrossRefGoogle Scholar
  26. 26.
    Auerbach AD, Greenbaum J, Pujara K et al. Spectrum of sequence variation in the FANCG gene: An International Fanconi anemia Registry (IFAR) study. Hum Mutat 2003; 21:158–168.PubMedCrossRefGoogle Scholar
  27. 27.
    Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 1999; 8:1893–1900.PubMedCrossRefGoogle Scholar
  28. 28.
    Maquat LE. When cells stop making sense: Effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1995; 1:453–465.PubMedGoogle Scholar
  29. 29.
    Valentine CR. The association of nonsense codons with exon skipping. Mutat Res 1998; 411:87–117.PubMedCrossRefGoogle Scholar
  30. 30.
    Maquat LE. NASty effects on fibrillin premRNA splicing: Another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes Dev 2002; 16:1743–1753.PubMedCrossRefGoogle Scholar
  31. 31.
    Mendell JT, Ap Rhys CM, Dietz HC. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 2002; 298:419–422.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang J, Chang YF, Hamilton JI et al. Nonsense-associated altered splicing: A frame-dependent response distinct from nonsense-mediated decay. Mol Cell 2002; 10:951–957.PubMedCrossRefGoogle Scholar
  33. 33.
    Gibson RA, Hajianpour A, Murer-Orlando M et al. A nonsense mutation and exon skipping in the Fanconi anaemia group C gene. Hum Mol Genet 1993; 2:797–799.PubMedCrossRefGoogle Scholar
  34. 34.
    Antonarakis SE. And the Nomenclature working group recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat 1998; 11:1–3.PubMedCrossRefGoogle Scholar
  35. 35.
    den Dunnen JT, Antonarakis SE. Nomenclature for the description of human sequence variations. Hum Genet 2001; 109:121–124.CrossRefGoogle Scholar
  36. 36.
    Futaki M, Yamashita T, Yagasaki H et al. The IVS4 + 4 A to T mutation of the fanconi anemia gene FANCC is not associated with a severe phenotype in Japanese patients. Blood 2000; 95:1493–1498.PubMedGoogle Scholar
  37. 37.
    Whitney MA, Saito H, Jakobs PM et al. A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nat Genet 1993; 4:202–205.PubMedCrossRefGoogle Scholar
  38. 38.
    Verlander PC, Lin JD, Udono MU et al. Mutation analysis of the Fanconi anemia gene FACC. Am J Hum Genet 1994; 54:595–601.PubMedGoogle Scholar
  39. 39.
    Verlander PC, Kaporis A, Liu Q et al. Carrier frequency of the IVS4 + 4 A→T mutation of the Fanconi anemia gene FAC in the Ashkenazi Jewish population. Blood 1995; 86:4034–4038.PubMedGoogle Scholar
  40. 40.
    Gillio AP, Verlander PC, Batish SD et al. Phenotypic consequences of mutations in the Fanconi anemia FAC gene: An international fanconi anemia registry study. Blood 1997; 90:105–110.PubMedGoogle Scholar
  41. 41.
    Levran O, Doggett NA, Auerbach AD. Identification of Alu-mediated deletions in the Fanconi anemia gene FAA. Hum Mutat 1998; 12:145–152.PubMedCrossRefGoogle Scholar
  42. 42.
    Dronkert ML, Kanaar R. Repair of DNA interstrand cross-links. Mutat Res 2001; 486:217–247.PubMedGoogle Scholar
  43. 43.
    Hoy CA, Thompson LH, Mooney CL et al. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res 1985; 45:1737–1743.PubMedGoogle Scholar
  44. 44.
    De Silva IU, McHugh PJ, Clingen PH et al. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol 2000; 20:7980–7990.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang X, Peterson CA, Zheng H et al. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol Cell Biol 2001; 21:713–720.PubMedCrossRefGoogle Scholar
  46. 46.
    Grompe M, D’Andrea A. Fanconi anemia and DNA repair. Hum Mol Genet 2001; 10:2253–2259.PubMedCrossRefGoogle Scholar
  47. 47.
    Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev Genet 2001; 2:446–457.PubMedCrossRefGoogle Scholar
  48. 48.
    Bagby Jr GC. Genetic basis of Fanconi anemia. Curr Opin Hematol 2003; 10:68–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia-Higuera I, Taniguchi T, Ganesan S et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7:249–262.PubMedCrossRefGoogle Scholar
  50. 50.
    Nakanishi K, Taniguchi T, Ranganathan V et al. Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 2002; 4:913–920.PubMedCrossRefGoogle Scholar
  51. 51.
    Pichierri P, Averbeck D, Rosselli F. DNA cross-link-dependent RAD50/MRE11/NBS1 subnuclear assembly requires the Fanconi anemia C protein. Hum Mol Genet 2002; 11:2531–2546.PubMedCrossRefGoogle Scholar
  52. 52.
    Sridharan D, Brown M, Lambert WC et al. Nonerythroid αII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J Cell Sci 2003; 116:823–835.PubMedCrossRefGoogle Scholar

Copyright information

© Eurekah.com and Springer Science+Business Media 2006

Authors and Affiliations

  • Akira Tachibana
    • 1
  1. 1.Radiation Biology CenterKyoto UniversityKyotoJapan

Personalised recommendations