Skip to main content
  • 4394 Accesses

Abstract

When a stationary crystal is illuminated with X-rays from a continuous range of wavelengths (polychromatic or “white” radiation), a Laue diffraction pattern is produced. The very first X-ray diffraction pictures of a crystal were in fact obtained in this way by Friedrich, Knipping, and Laue in 1912. However, since then, monochromatic beams were used nearly exclusively in X-ray crystal structure determinations. This is due to the fundamental problem that a single Laue diffraction spot can contain reflections from a set of parallel planes with different d/n, where d is the interplanar distance and n is an integer. These spots are multiples instead of singles. This is easily explained by Bragg’s law:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Drenth, J. (2007). Laue Diffraction. In: Principles of Protein X-Ray Crystallography. Springer, New York, NY. https://doi.org/10.1007/0-387-33746-6_12

Download citation

Publish with us

Policies and ethics