Skip to main content

Fractionation

  • Chapter
Book cover Stable Isotope Ecology

This chapter starts with atoms and ends with the whole biosphere, showing how isotope fractionation works in theory and practice. Fractionation starts with atomic-level considerations, but usually starts to make sense in larger ecological contexts only when you grasp the idea of mass balance. Mass balance is an accounting idea that masses and isotopes entering a reaction must equal masses and isotopes exiting the same reaction. This sounds simple, but it forces us to budget several things at once, masses and isotopes, in a kind of multitasking consciousness. This demands a juggling skill that takes practice to learn, so be patient and take time to practice, especially using workbook 7.2 of in the Chapter 7 folder on the accompanying CD.

Sections 7.1, 7.2, 7.6, 7.7, and 7.10 contain the more theoretical sections, and may need rereading several times for full comprehension. Sections 7.3 to 7.5 and 7.8 and 7.9 provide examples.Technical Supplements 7A and 7B on the accompanying CD are reference sections for advanced and interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Section 7.1

  • Anderson, T.F. and M.A. Arthur. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleaoenvironmental problems. In M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer, and L.S. Land (eds.), Stable Isotopes in Sedimentary Geology. SEPM Short Course #10, Society of Economic Paleontologists and Mineralogists, Dallas, TX, pp. 1-1 to 1-151.

    Google Scholar 

  • Benner, R., M.L. Fogel, E.K. Sprague, and R.E. Hodson. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708-710.

    Article  CAS  Google Scholar 

  • Bigeleisen, J. 1949a. The validity of the use of tracers to follow chemical reactions. Science 110:14-16.

    Article  CAS  PubMed  Google Scholar 

  • Bigeleisen, J. 1949b. The relative reaction velocities of isotopic molecules. Journal of Chemical Physics 17:675-678.

    Article  CAS  Google Scholar 

  • Bigeleisen, J. 1965. Chemistry of isotopes. Science 147:463- 471.

    Article  CAS  PubMed  Google Scholar 

  • Bigeleisen, J. 1969. Isotope separation practice. In W. Spindel (ed.), Isotope Effects in Chemical Processes. Advances in Chemistry Series 89, American Chemical Society, Washington, D.C., pp. 1-24.

    Chapter  Google Scholar 

  • Bigeleisen, J. and M.G. Mayer. 1947. Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics 15:261-267.

    Article  CAS  Google Scholar 

  • Bigeleisen, J. and M. Wolfsberg. 1958. Theoretical and experimental aspects of isotope effects in chemical reactions. In I. Prigogine, Advances in Chemical Physics, v. 1, Wiley, New York, pp. 15-76.

    Google Scholar 

  • Brenna, J.T. 2001. Natural intramolecular isotope measurements in physiology: Elements of the case for an effort toward high-precision position-specific isotope analysis. Rapid Communications in Mass Spectrometry 15:1252-1262.

    Article  CAS  PubMed  Google Scholar 

  • Clark, M.J., B.L. Beard, and F. Albarede. 2004. Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry, vol. 55. Mineralogical Society of America anthe Geochemical Society. Washington, D.C.

    Google Scholar 

  • Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3:53-92.

    Article  CAS  Google Scholar 

  • DeNiro, M.J. and S. Epstein. 1976. You are what you eat (plus a few ‰): The carbon isotope cycle in food chains. Geological Society of America Abstracts Program 8:834-835.

    Google Scholar 

  • DeNiro, M.J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495-506.

    Article  CAS  Google Scholar 

  • Farquhar, J., H. Bao, and M. Thiemens. 2000. Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756-758.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar, J., B.A. Wing, K.D. McKeegan, J.W. Harris, P. Cartigny, and M.H. Thiemens. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369-2374.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, I., N. Mahieu, and G. Cadisch. 2003. Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochemical Cycles 17:1-1 to 1-11.

    Article  CAS  Google Scholar 

  • Fry, A. and M. Calvin. 1952. The isotope effect in the decomposition of oxalic acid. Journal of Physical Chemistry 56:897-901.

    Article  CAS  Google Scholar 

  • Fry, B. 2003. Steady state models of stable isotope distributions. Isotopes in Environmental and Health Studies 39:219-232.

    Article  CAS  PubMed  Google Scholar 

  • Fry, L.M. 1962. Radium and fission product radioactivity in thermal waters. Nature 195: 375-376.

    Article  CAS  Google Scholar 

  • Hayes, J.M. 2001. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In J.W. Valley and D.R. Cole (eds.), Stable Isotope Geochemistry, Reviews in Mineralogy and Geochemistry, vol. 43. Mineralogical Society of America, Washington D.C., pp. 225-278.

    Google Scholar 

  • Hoefs, J. 2004. Stable Isotope Geochemistry. Springer-Verlag, New York.

    Book  Google Scholar 

  • Luz, B. and E. Barkan. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028-2031.

    Article  CAS  PubMed  Google Scholar 

  • Luz, B., E. Barkan, J.L. Bender, M.H. Thiemens, and K.A. Boering. 1999. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547-550.

    Article  CAS  Google Scholar 

  • Mariotti, A., J.C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux. 1981. Experimental determination of nitrogen kinetic isotope fractions: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62:413- 430.

    Article  CAS  Google Scholar 

  • Martin, G.G., Y.L. Martin, N. Naulet and H.J.D. McManus. 1996. Application of 2H SNIF-NMR and 13C SIRA-MS analyses to maple syrup: Detection of added sugars. Journal of Agricul- tural Food Chemistry 44:3206-3213.

    Article  CAS  Google Scholar 

  • Martin, G.J. 1995. Inference of metabolic and environmental effects from the NMR determination of natural deuterium isotopomers. In E. Wada, T. Yoneyama, M. Minagawa, T. Ando, and B.D. Fry (eds.), Stable Isotopes in the Biosphere. Kyoto University Press, Japan, pp. 36-56.

    Google Scholar 

  • McClelland, J.W., C.M. Holl, and J.P. Montoya. 2003. Relating low δ15N values of zooplankton to N2-fixation in the tropical North Atlantic: Insights provided by stable isotope ratios of amino acids. Deep-Sea Research 50:849-861.

    Article  CAS  Google Scholar 

  • Rayleigh, Lord. 1902. On the distillation of binary mixtures. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Series 6, 4:521-537.

    Article  Google Scholar 

  • Rossman, A., M. Butzenlechner, and H.-L. Schmidt. 1991. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiology 96:609-614.

    Article  Google Scholar 

  • Urey, H.C. 1939. Separation of isotopes. Reports on Progress in Physics 6:48-77.

    Article  Google Scholar 

  • Urey, H.C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (London), Part 1:562-581.

    Google Scholar 

  • Young, E.D., A. Galy, and H. Nagahara. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66:1095-1104.

    Article  CAS  Google Scholar 

  • Zhang, J., P.D. Quay, and D.O. Wilbur. 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta 59:107-114.

    Article  CAS  Google Scholar 

Section 7.2

  • Mariotti et al. 1981. Listed above; see Section 7.1 readings.

    Google Scholar 

Section 7.4

  • Case, J.W. and H.R. Krouse. 1980. Variations in sulphur content and stable isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia 44:248-257.

    Article  Google Scholar 

  • Fry. 2003. Listed above; see Section 7.1 readings.

    Google Scholar 

  • Krouse, H.R. 1980. Sulphur isotopes in our environment. In P. Fritz and J.Ch. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, vol. 1. Elsevier Scientific, Amsterdam, pp. 435- 471.

    Google Scholar 

  • Mariotti, A., A. Landreau, and B. Simon. 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochimica et Cosmochimica Acta 52:1869-1878.

    Article  CAS  Google Scholar 

  • Rayleigh, 1902. Listed above; see Section 7.1 readings.

    Google Scholar 

Section 7.5

  • Altabet, M.A. 2001. Nitrogen isotopic evidence for micronutrient control of fractional NO3− utilization in the equatorial Pacific. Limnology and Oceanography 46:368-380.

    Article  CAS  Google Scholar 

  • Altabet, M.A. and R. Francois. 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8:103-116.

    Article  CAS  Google Scholar 

  • Chanton, J.P., C.S. Martens, and M.B. Goldhaber. 1987. Biogeochemical cycling in an organicrich coastal marine basin. 8.A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface. Geochimica et Cosmochimica Acta 51:1201-1208.

    Article  CAS  Google Scholar 

  • Dore, J.E., J.R. Brum, L. Tupas, and D.M. Karl. 2002. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnology and Oceanography 47:1595-1607.

    Article  CAS  Google Scholar 

  • Farell, J.W., T.F. Pedersen, S.E. Calvert, and B. Nielsen. 1995. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377:514-517.

    Article  Google Scholar 

  • Galbraith E.D., M. Kienast, T.F. Pedersen, and S.E. Calvert. 2004. Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19:PA4007.

    Article  Google Scholar 

  • Hartmann, von M. and H. Nielsen. 1969. δ34S-Weste in rezenten Meeres-sedimenten und ihre Deutung am Beispiel einiger Sediment-profile aus der westlichen Ostsee. Geologische Rundschau 58:621-655.

    Article  CAS  Google Scholar 

  • Jorgensen, B.B. 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta 43:363-374.

    Article  CAS  Google Scholar 

  • Lourey, M.J., T.W. Trull, and D.M. Sigman. 2003. Sensitivity of δ15N of nitrate, suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Sourthern Ocean. Global Biogeochemical Cycles 17:7-1 to 7-18.

    Article  CAS  Google Scholar 

  • Montoya, J.P., C.M. Holl, J.P. Zehr, A. Hansen, T.A. Villareal, and D.G. Capone. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027-1031.

    Article  CAS  PubMed  Google Scholar 

  • Saino, T. and A. Hattori. 1980. 15N natural abundance in oceanic suspended particulate matter. Nature 283:752-754.

    Article  CAS  Google Scholar 

  • Saino, T. and A. Hattori. 1987. Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Research 34:807-827.

    Article  CAS  Google Scholar 

Section 7.6

  • Chappell, J., and N.J. Shackleton. 1986. Oxygen isotopes and sea level. Nature 324:137-140.

    Article  CAS  Google Scholar 

  • Cohn, M. and H.C. Urey. 1938. Oxygen exchange reactions of organic compounds and water. Journal of the American Chemical Society 60: 679-682.

    Article  CAS  Google Scholar 

  • Epstein, S., R. Buchsbaum, H.A. Lowenstam, and H.C. Urey. 1953. Revised carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America 64:1315-1326.

    Article  CAS  Google Scholar 

  • Faure, G. and T.M. Mensing. 2004. Isotopes: Principles and Applications. John Wiley and Sons, New York.

    Google Scholar 

  • Hoefs. 2004. Listed above; see Section 7.1 readings.

    Google Scholar 

  • McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18:849-857.

    Article  CAS  Google Scholar 

  • Shackleton, N.J. 1987. Oxygen, isotopes, ice volume and sea-level. Quaternary Science Reviews 6:183-190.

    Article  Google Scholar 

  • Urey, H.C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (London), Part 1:562-581.

    Google Scholar 

  • Urey, H. 1948. Oxygen isotopes in nature and in the laboratory. Science 108:489- 496.

    Article  CAS  PubMed  Google Scholar 

Section 7.7

  • Canfield, D.E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta 65:1117-1124.

    Article  CAS  Google Scholar 

  • Cullen, J.T., Y. Rosenthal, and P.G. Falkowski. 2001. The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnology and Oceanography 46:996-998.

    Google Scholar 

  • Ehleringer, J.R., A.E. Hall, and G.D. Farquhar. 1993. Stable Isotopes and Plant Carbon-Water Relations. Physiological Ecology Series of Monographs, Texts and Treatises. Academic, San Diego, CA.

    Google Scholar 

  • Fry, 2003. Listed above; see Section 7.1 readings.

    Google Scholar 

  • Goericke, R., J.P. Montoya, and B. Fry. 1994. Physiology of isotope fractionation in algae and cyanobacteria. In K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology. Blackwell Scientific, Oxford, UK, pp. 187-221.

    Google Scholar 

  • Hayes. 2001. Listed above; see Section 7.1 readings.

    Google Scholar 

  • Neeboda, J.A., D.M. Sigman, and P.J. Harrison. 2004. The mechanism of isotope fractionation during algal nitrate assimilation as illuminated by the 15N/14N of intracellular nitrate. Journal of Phycology 40:517-522.

    Article  CAS  Google Scholar 

  • O’Leary, M.H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328-336.

    Article  Google Scholar 

  • Popp, B.N, E.A. Laws, R.R. Bidigare, J.E. Dore, K.L. Hanson, and S.G. Wakeham. 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62:69-77.

    Article  CAS  Google Scholar 

  • Rees, C.E. 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta 37:1141-1162.

    Article  CAS  Google Scholar 

  • Schell, D.M. 2000. Declining carrying capacity in the Bering Sea: Isotopic evidence from whale baleen. Limnology and Oceanography 45:459-462.

    Article  CAS  Google Scholar 

  • Schell, D.M. 2001. Carbon isotope ratio variations in Bering Sea biota: The role of anthropogenic carbon. Limnology and Oceanography 46:999-1000

    Google Scholar 

  • Shearer, G., J. Duffy, K.H. Kohl, and B. Commoner. 1974.A steady-state model of isotopic fractionation accompanyg nitrogen transformations in soil. Soil Science Society of America, Journal 38:315-322.

    Article  CAS  Google Scholar 

  • Snover, A.K., P.D. Quay, and W.M. Hao. 2000. The D/H content of methane emitted from biomass burning. Global Biogeochemical Cycles 14:11-24.

    Article  CAS  Google Scholar 

  • Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. Journal of Geophysical Research 91:13232-13238.

    Article  Google Scholar 

Section 7.8

  • Anbar, A.D. and A.H. Knoll. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297:1137-1142.

    Article  CAS  PubMed  Google Scholar 

  • Canfield, D.E. 1998. A new model for Proterozoic ocean chemistry. Nature 396:450- 452.

    Article  CAS  Google Scholar 

  • Canfield, D.E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta 65:1117-1124.

    Article  CAS  Google Scholar 

  • Canfield, D.E. and R. Raiswell. 1999. The evolution of the sulfur cycle. American Journal of Science 299:697-723.

    Article  CAS  Google Scholar 

  • Canfield, D.E. and B. Thamdrup. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:2973-1975.

    Article  Google Scholar 

  • Farquhar, J., H. Bao, and M. Thiemens. 2000. Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756-758.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar, J., B.A. Wing, K.D. McKeegan, J.W. Harris, P. Cartigny, and M.H. Thiemens. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369-2374.

    Article  CAS  PubMed  Google Scholar 

  • Fry, B. 1989. Sulfate fertilization and changes in sulfur stable isotopic compositions of lake sediments. In J. Ehleringer and P. Rundel (eds.), Stable Isotopes in Ecological Research. Springer-Verlag, New York, pp. 445- 453.

    Chapter  Google Scholar 

  • Fry, B., H. Gest, and J.M. Hayes. 1988.  34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria. Applied and Environmental Microbiology 54:250-256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fry, B., A. Giblin, M. Dornblaser, and B. Peterson. 1995. Stable sulfur isotopic compositions of chromium reducible sulfur in lake sediments. In M. Schoonen and M.A. Vairavamurthy (eds.), Geochemical Transformations of Sedimentary Sulfur. American Chemical Society Symposium Series. #612, Washington, D.C., pp. 397- 410.

    Chapter  Google Scholar 

  • Goldhaber, M.B. and I.R. Kaplan. 1975. Controls and consequences of sulfate reduction rates in recent marine sediments. Soci Science 119:42-55.

    CAS  Google Scholar 

  • Habicht, K.S., M. Gade, B. Thamdrup, P. Berg, and D.E. Canfield. 2002. Calibration of sulfate levels in the Archean Ocean. Science 298:2372-2374.

    Article  CAS  PubMed  Google Scholar 

  • Hallberg, R.O. and L.E. Bagander. 1985. Fractionation of stable sulfur isotopes in a closed sulfuretum. In D.E. Caldwell, J.A. Brierley, and C.L. Brierley (eds.), Planetary Ecology. Van Nostrand Reinhold, New York, pp. 285-296.

    Google Scholar 

  • Harrison, A.G. and H.G. Thode. 1958. Mechanism of the bacterial reduction of sulfate from isotope fractionation studies. Transactions of the Faraday Society 53:84-92.

    Article  Google Scholar 

  • Jorgensen, B.B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography 22:814-832.

    Article  Google Scholar 

  • Jorgensen, B.B. 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249: 152-154.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, I.R. and S.C. Rittenberg. 1964. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology 34:195-212.

    Article  CAS  PubMed  Google Scholar 

  • Knoll, A. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Mariotti et al. 1981. Listed above; see Section 7.1 readings.

    Google Scholar 

  • McNamara, J. and H.G. Thode. 1950. Comparison of the isotopic constitution of terrestrial and meteoritic sulfur. Physical Review 78:307-308.

    Article  Google Scholar 

  • Rees, C.E. 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta 37:1141-1162.

    Article  CAS  Google Scholar 

  • Rouxel, O.J., A. Bekker, and K.J. Edwards. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088-1091.

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki, M.D., H. Elderfield, and B. Spiro. 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochimica et Cosmochimica Acta 65:777-789.

    Article  CAS  Google Scholar 

  • Schidlowski, M., J.M. Hayes, and I.R. Kaplan. 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In J.W. Schopf (ed.), Earths Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ, pp. 149-186.

    Google Scholar 

  • Shen, Y., R. Buick, and D.E. Canfield. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77-81.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, K.B. and D.E. Canfield. 2004. Annual fluctuations in sulfur isotope fractionation in the water column of a euxinic marine basin. Geochimica et Cosmochimica Acta 68:503-515.

    Article  CAS  Google Scholar 

  • Thode, H.G., J. Monster, and H.B. Dunford. 1961. Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta 25:150-174.

    Article  Google Scholar 

  • Tudge, A.P. and H.G. Thode. 1950. Thermodynamic properties of isotopic compounds of sulphur. Canadian Journal of Research B28:567-578.

    Article  Google Scholar 

  • Wortmann, U.G., S.M. Bernasconi, and M.E. Boettcher. 2001. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647-649.

    Article  CAS  Google Scholar 

Section 7.9

  • Broecker, W.S. 1970. A boundary condition on the evolution of atmospheric oxygen. Journal of Geophysical Research 75:3553-3557.

    Article  CAS  Google Scholar 

  • Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3:53-92.

    Article  CAS  Google Scholar 

  • Hayes, J.M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In J.W. Schopf (ed.), Earth’s Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ, pp. 291-301.

    Google Scholar 

  • Park, R. and S. Epstein. 1961. Metabolic fractionation of C13 and C12 in plants. Plant Physiology 36:133-138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopf, J.W. (ed.). 1983. Earth’s Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.

    Google Scholar 

Section 7.10

  • Evans, J.R., D.T. Sharkey, J.A. Berry, and G.D. Farquhar. 1986. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Australian Journal of Plant Physiology 13:281-292.

    Article  CAS  Google Scholar 

  • Fry. 2003. Listed above; see Section 7.8 readings.

    Google Scholar 

  • Fry et al. 1988. Listed above; see Section 7.1 readings.

    Google Scholar 

  • Fry, B., H. Gest, and J.M. Hayes. 1985. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. FEMS Microbiology Letters 27:227-232.

    Article  CAS  PubMed  Google Scholar 

  • Fry, B., W. Ruf, H. Gest, and J.M. Hayes. 1988. Sulfur isotope effects associated with the non-biological oxidation of sulfide by O2 in aqueous solution. Chemical Geology 73:205-210.

    CAS  Google Scholar 

  • Hallberg, R.O. and L.E. Bagander. 1985. Fractionation of stable sulfur isotopes in a closed sulfuretum. In D.E. Caldwell, J.A. Brierley, and C.L. Brierley (eds.), Planetary Ecology. Van Nostrand Reinhold, New York, pp. 285-296.

    Google Scholar 

  • Harrison and Thode. 1958. Listed above; see Section 7.8 readings.

    Google Scholar 

  • Kaplan and Rittenberg. 1964. Listed above; see Section 7.8 readings. Mariotti et al. 1981. Listed above; see Section 7.1 readings.

    Google Scholar 

  • Rayleigh, 1902. Listed above; see Section 7.1 readings.

    Google Scholar 

  • Roeske, C.A. and M.H. O’Leary. 1984. Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275-6284.

    Article  CAS  Google Scholar 

  • Sharkey, T.D. and J.A. Berry. 1985. Carbon isotope fractionation of algae as influenced by an inducible CO2 concentrating mechanism. In W.J. Lucas and J.A. Berry (eds.), Inorganic Carbon Uptake by Aquatic Organisms. American Society of Plant Physiologists, Rockville MD. pp. 389- 401.

    Google Scholar 

  • Zhang et al. 1995. Listed above; see Section 7.1 readings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fry, B. (2006). Fractionation. In: Stable Isotope Ecology. Springer, New York, NY. https://doi.org/10.1007/0-387-33745-8_7

Download citation

Publish with us

Policies and ethics