This chapter starts with atoms and ends with the whole biosphere, showing how isotope fractionation works in theory and practice. Fractionation starts with atomic-level considerations, but usually starts to make sense in larger ecological contexts only when you grasp the idea of mass balance. Mass balance is an accounting idea that masses and isotopes entering a reaction must equal masses and isotopes exiting the same reaction. This sounds simple, but it forces us to budget several things at once, masses and isotopes, in a kind of multitasking consciousness. This demands a juggling skill that takes practice to learn, so be patient and take time to practice, especially using workbook 7.2 of in the Chapter 7 folder on the accompanying CD.

Sections 7.1, 7.2, 7.6, 7.7, and 7.10 contain the more theoretical sections, and may need rereading several times for full comprehension. Sections 7.3 to 7.5 and 7.8 and 7.9 provide examples.Technical Supplements 7A and 7B on the accompanying CD are reference sections for advanced and interested readers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Section 7.1

  1. Anderson, T.F. and M.A. Arthur. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleaoenvironmental problems. In M.A. Arthur, T.F. Anderson, I.R. Kaplan, J. Veizer, and L.S. Land (eds.), Stable Isotopes in Sedimentary Geology. SEPM Short Course #10, Society of Economic Paleontologists and Mineralogists, Dallas, TX, pp. 1-1 to 1-151.Google Scholar
  2. Benner, R., M.L. Fogel, E.K. Sprague, and R.E. Hodson. 1987. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329:708-710.CrossRefGoogle Scholar
  3. Bigeleisen, J. 1949a. The validity of the use of tracers to follow chemical reactions. Science 110:14-16.PubMedCrossRefGoogle Scholar
  4. Bigeleisen, J. 1949b. The relative reaction velocities of isotopic molecules. Journal of Chemical Physics 17:675-678.CrossRefGoogle Scholar
  5. Bigeleisen, J. 1965. Chemistry of isotopes. Science 147:463- 471.PubMedCrossRefGoogle Scholar
  6. Bigeleisen, J. 1969. Isotope separation practice. In W. Spindel (ed.), Isotope Effects in Chemical Processes. Advances in Chemistry Series 89, American Chemical Society, Washington, D.C., pp. 1-24.CrossRefGoogle Scholar
  7. Bigeleisen, J. and M.G. Mayer. 1947. Calculation of equilibrium constants for isotopic exchange reactions. Journal of Chemical Physics 15:261-267.CrossRefGoogle Scholar
  8. Bigeleisen, J. and M. Wolfsberg. 1958. Theoretical and experimental aspects of isotope effects in chemical reactions. In I. Prigogine, Advances in Chemical Physics, v. 1, Wiley, New York, pp. 15-76.Google Scholar
  9. Brenna, J.T. 2001. Natural intramolecular isotope measurements in physiology: Elements of the case for an effort toward high-precision position-specific isotope analysis. Rapid Communications in Mass Spectrometry 15:1252-1262.PubMedCrossRefGoogle Scholar
  10. Clark, M.J., B.L. Beard, and F. Albarede. 2004. Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry, vol. 55. Mineralogical Society of America anthe Geochemical Society. Washington, D.C.Google Scholar
  11. Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3:53-92.CrossRefGoogle Scholar
  12. DeNiro, M.J. and S. Epstein. 1976. You are what you eat (plus a few ‰): The carbon isotope cycle in food chains. Geological Society of America Abstracts Program 8:834-835.Google Scholar
  13. DeNiro, M.J. and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495-506.CrossRefGoogle Scholar
  14. Farquhar, J., H. Bao, and M. Thiemens. 2000. Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756-758.PubMedCrossRefGoogle Scholar
  15. Farquhar, J., B.A. Wing, K.D. McKeegan, J.W. Harris, P. Cartigny, and M.H. Thiemens. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369-2374.PubMedCrossRefGoogle Scholar
  16. Fernandez, I., N. Mahieu, and G. Cadisch. 2003. Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochemical Cycles 17:1-1 to 1-11.CrossRefGoogle Scholar
  17. Fry, A. and M. Calvin. 1952. The isotope effect in the decomposition of oxalic acid. Journal of Physical Chemistry 56:897-901.CrossRefGoogle Scholar
  18. Fry, B. 2003. Steady state models of stable isotope distributions. Isotopes in Environmental and Health Studies 39:219-232.PubMedCrossRefGoogle Scholar
  19. Fry, L.M. 1962. Radium and fission product radioactivity in thermal waters. Nature 195: 375-376.CrossRefGoogle Scholar
  20. Hayes, J.M. 2001. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In J.W. Valley and D.R. Cole (eds.), Stable Isotope Geochemistry, Reviews in Mineralogy and Geochemistry, vol. 43. Mineralogical Society of America, Washington D.C., pp. 225-278.Google Scholar
  21. Hoefs, J. 2004. Stable Isotope Geochemistry. Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Luz, B. and E. Barkan. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028-2031.PubMedCrossRefGoogle Scholar
  23. Luz, B., E. Barkan, J.L. Bender, M.H. Thiemens, and K.A. Boering. 1999. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547-550.CrossRefGoogle Scholar
  24. Mariotti, A., J.C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux. 1981. Experimental determination of nitrogen kinetic isotope fractions: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62:413- 430.CrossRefGoogle Scholar
  25. Martin, G.G., Y.L. Martin, N. Naulet and H.J.D. McManus. 1996. Application of 2H SNIF-NMR and 13C SIRA-MS analyses to maple syrup: Detection of added sugars. Journal of Agricul- tural Food Chemistry 44:3206-3213.CrossRefGoogle Scholar
  26. Martin, G.J. 1995. Inference of metabolic and environmental effects from the NMR determination of natural deuterium isotopomers. In E. Wada, T. Yoneyama, M. Minagawa, T. Ando, and B.D. Fry (eds.), Stable Isotopes in the Biosphere. Kyoto University Press, Japan, pp. 36-56.Google Scholar
  27. McClelland, J.W., C.M. Holl, and J.P. Montoya. 2003. Relating low δ15N values of zooplankton to N2-fixation in the tropical North Atlantic: Insights provided by stable isotope ratios of amino acids. Deep-Sea Research 50:849-861.CrossRefGoogle Scholar
  28. Rayleigh, Lord. 1902. On the distillation of binary mixtures. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Series 6, 4:521-537.CrossRefGoogle Scholar
  29. Rossman, A., M. Butzenlechner, and H.-L. Schmidt. 1991. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiology 96:609-614.CrossRefGoogle Scholar
  30. Urey, H.C. 1939. Separation of isotopes. Reports on Progress in Physics 6:48-77.CrossRefGoogle Scholar
  31. Urey, H.C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (London), Part 1:562-581.Google Scholar
  32. Young, E.D., A. Galy, and H. Nagahara. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66:1095-1104.CrossRefGoogle Scholar
  33. Zhang, J., P.D. Quay, and D.O. Wilbur. 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta 59:107-114.CrossRefGoogle Scholar

Section 7.2

  1. Mariotti et al. 1981. Listed above; see Section 7.1 readings.Google Scholar

Section 7.4

  1. Case, J.W. and H.R. Krouse. 1980. Variations in sulphur content and stable isotope composition of vegetation near a SO2 source at Fox Creek, Alberta, Canada. Oecologia 44:248-257.CrossRefGoogle Scholar
  2. Fry. 2003. Listed above; see Section 7.1 readings.Google Scholar
  3. Krouse, H.R. 1980. Sulphur isotopes in our environment. In P. Fritz and J.Ch. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, vol. 1. Elsevier Scientific, Amsterdam, pp. 435- 471.Google Scholar
  4. Mariotti, A., A. Landreau, and B. Simon. 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochimica et Cosmochimica Acta 52:1869-1878.CrossRefGoogle Scholar
  5. Rayleigh, 1902. Listed above; see Section 7.1 readings.Google Scholar

Section 7.5

  1. Altabet, M.A. 2001. Nitrogen isotopic evidence for micronutrient control of fractional NO3− utilization in the equatorial Pacific. Limnology and Oceanography 46:368-380.CrossRefGoogle Scholar
  2. Altabet, M.A. and R. Francois. 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8:103-116.CrossRefGoogle Scholar
  3. Chanton, J.P., C.S. Martens, and M.B. Goldhaber. 1987. Biogeochemical cycling in an organicrich coastal marine basin. 8.A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface. Geochimica et Cosmochimica Acta 51:1201-1208.CrossRefGoogle Scholar
  4. Dore, J.E., J.R. Brum, L. Tupas, and D.M. Karl. 2002. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnology and Oceanography 47:1595-1607.CrossRefGoogle Scholar
  5. Farell, J.W., T.F. Pedersen, S.E. Calvert, and B. Nielsen. 1995. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377:514-517.CrossRefGoogle Scholar
  6. Galbraith E.D., M. Kienast, T.F. Pedersen, and S.E. Calvert. 2004. Glacial-interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19:PA4007.CrossRefGoogle Scholar
  7. Hartmann, von M. and H. Nielsen. 1969. δ34S-Weste in rezenten Meeres-sedimenten und ihre Deutung am Beispiel einiger Sediment-profile aus der westlichen Ostsee. Geologische Rundschau 58:621-655.CrossRefGoogle Scholar
  8. Jorgensen, B.B. 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochimica et Cosmochimica Acta 43:363-374.CrossRefGoogle Scholar
  9. Lourey, M.J., T.W. Trull, and D.M. Sigman. 2003. Sensitivity of δ15N of nitrate, suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Sourthern Ocean. Global Biogeochemical Cycles 17:7-1 to 7-18.CrossRefGoogle Scholar
  10. Montoya, J.P., C.M. Holl, J.P. Zehr, A. Hansen, T.A. Villareal, and D.G. Capone. 2004. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430:1027-1031.PubMedCrossRefGoogle Scholar
  11. Saino, T. and A. Hattori. 1980. 15N natural abundance in oceanic suspended particulate matter. Nature 283:752-754.CrossRefGoogle Scholar
  12. Saino, T. and A. Hattori. 1987. Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Research 34:807-827.CrossRefGoogle Scholar

Section 7.6

  1. Chappell, J., and N.J. Shackleton. 1986. Oxygen isotopes and sea level. Nature 324:137-140.CrossRefGoogle Scholar
  2. Cohn, M. and H.C. Urey. 1938. Oxygen exchange reactions of organic compounds and water. Journal of the American Chemical Society 60: 679-682.CrossRefGoogle Scholar
  3. Epstein, S., R. Buchsbaum, H.A. Lowenstam, and H.C. Urey. 1953. Revised carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America 64:1315-1326.CrossRefGoogle Scholar
  4. Faure, G. and T.M. Mensing. 2004. Isotopes: Principles and Applications. John Wiley and Sons, New York.Google Scholar
  5. Hoefs. 2004. Listed above; see Section 7.1 readings.Google Scholar
  6. McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18:849-857.CrossRefGoogle Scholar
  7. Shackleton, N.J. 1987. Oxygen, isotopes, ice volume and sea-level. Quaternary Science Reviews 6:183-190.CrossRefGoogle Scholar
  8. Urey, H.C. 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society (London), Part 1:562-581.Google Scholar
  9. Urey, H. 1948. Oxygen isotopes in nature and in the laboratory. Science 108:489- 496.PubMedCrossRefGoogle Scholar

Section 7.7

  1. Canfield, D.E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta 65:1117-1124.CrossRefGoogle Scholar
  2. Cullen, J.T., Y. Rosenthal, and P.G. Falkowski. 2001. The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnology and Oceanography 46:996-998.Google Scholar
  3. Ehleringer, J.R., A.E. Hall, and G.D. Farquhar. 1993. Stable Isotopes and Plant Carbon-Water Relations. Physiological Ecology Series of Monographs, Texts and Treatises. Academic, San Diego, CA.Google Scholar
  4. Fry, 2003. Listed above; see Section 7.1 readings.Google Scholar
  5. Goericke, R., J.P. Montoya, and B. Fry. 1994. Physiology of isotope fractionation in algae and cyanobacteria. In K. Lajtha and R. Michener (eds.), Stable Isotopes in Ecology. Blackwell Scientific, Oxford, UK, pp. 187-221.Google Scholar
  6. Hayes. 2001. Listed above; see Section 7.1 readings.Google Scholar
  7. Neeboda, J.A., D.M. Sigman, and P.J. Harrison. 2004. The mechanism of isotope fractionation during algal nitrate assimilation as illuminated by the 15N/14N of intracellular nitrate. Journal of Phycology 40:517-522.CrossRefGoogle Scholar
  8. O’Leary, M.H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328-336.CrossRefGoogle Scholar
  9. Popp, B.N, E.A. Laws, R.R. Bidigare, J.E. Dore, K.L. Hanson, and S.G. Wakeham. 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62:69-77.CrossRefGoogle Scholar
  10. Rees, C.E. 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta 37:1141-1162.CrossRefGoogle Scholar
  11. Schell, D.M. 2000. Declining carrying capacity in the Bering Sea: Isotopic evidence from whale baleen. Limnology and Oceanography 45:459-462.CrossRefGoogle Scholar
  12. Schell, D.M. 2001. Carbon isotope ratio variations in Bering Sea biota: The role of anthropogenic carbon. Limnology and Oceanography 46:999-1000Google Scholar
  13. Shearer, G., J. Duffy, K.H. Kohl, and B. Commoner. 1974.A steady-state model of isotopic fractionation accompanyg nitrogen transformations in soil. Soil Science Society of America, Journal 38:315-322.CrossRefGoogle Scholar
  14. Snover, A.K., P.D. Quay, and W.M. Hao. 2000. The D/H content of methane emitted from biomass burning. Global Biogeochemical Cycles 14:11-24.CrossRefGoogle Scholar
  15. Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. Journal of Geophysical Research 91:13232-13238.CrossRefGoogle Scholar

Section 7.8

  1. Anbar, A.D. and A.H. Knoll. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297:1137-1142.PubMedCrossRefGoogle Scholar
  2. Canfield, D.E. 1998. A new model for Proterozoic ocean chemistry. Nature 396:450- 452.CrossRefGoogle Scholar
  3. Canfield, D.E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta 65:1117-1124.CrossRefGoogle Scholar
  4. Canfield, D.E. and R. Raiswell. 1999. The evolution of the sulfur cycle. American Journal of Science 299:697-723.CrossRefGoogle Scholar
  5. Canfield, D.E. and B. Thamdrup. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:2973-1975.CrossRefGoogle Scholar
  6. Farquhar, J., H. Bao, and M. Thiemens. 2000. Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756-758.PubMedCrossRefGoogle Scholar
  7. Farquhar, J., B.A. Wing, K.D. McKeegan, J.W. Harris, P. Cartigny, and M.H. Thiemens. 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369-2374.PubMedCrossRefGoogle Scholar
  8. Fry, B. 1989. Sulfate fertilization and changes in sulfur stable isotopic compositions of lake sediments. In J. Ehleringer and P. Rundel (eds.), Stable Isotopes in Ecological Research. Springer-Verlag, New York, pp. 445- 453.CrossRefGoogle Scholar
  9. Fry, B., H. Gest, and J.M. Hayes. 1988.  34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria. Applied and Environmental Microbiology 54:250-256.PubMedPubMedCentralGoogle Scholar
  10. Fry, B., A. Giblin, M. Dornblaser, and B. Peterson. 1995. Stable sulfur isotopic compositions of chromium reducible sulfur in lake sediments. In M. Schoonen and M.A. Vairavamurthy (eds.), Geochemical Transformations of Sedimentary Sulfur. American Chemical Society Symposium Series. #612, Washington, D.C., pp. 397- 410.CrossRefGoogle Scholar
  11. Goldhaber, M.B. and I.R. Kaplan. 1975. Controls and consequences of sulfate reduction rates in recent marine sediments. Soci Science 119:42-55.Google Scholar
  12. Habicht, K.S., M. Gade, B. Thamdrup, P. Berg, and D.E. Canfield. 2002. Calibration of sulfate levels in the Archean Ocean. Science 298:2372-2374.PubMedCrossRefGoogle Scholar
  13. Hallberg, R.O. and L.E. Bagander. 1985. Fractionation of stable sulfur isotopes in a closed sulfuretum. In D.E. Caldwell, J.A. Brierley, and C.L. Brierley (eds.), Planetary Ecology. Van Nostrand Reinhold, New York, pp. 285-296.Google Scholar
  14. Harrison, A.G. and H.G. Thode. 1958. Mechanism of the bacterial reduction of sulfate from isotope fractionation studies. Transactions of the Faraday Society 53:84-92.CrossRefGoogle Scholar
  15. Jorgensen, B.B. 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography 22:814-832.CrossRefGoogle Scholar
  16. Jorgensen, B.B. 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249: 152-154.PubMedCrossRefGoogle Scholar
  17. Kaplan, I.R. and S.C. Rittenberg. 1964. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology 34:195-212.PubMedCrossRefGoogle Scholar
  18. Knoll, A. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, NJ.Google Scholar
  19. Mariotti et al. 1981. Listed above; see Section 7.1 readings.Google Scholar
  20. McNamara, J. and H.G. Thode. 1950. Comparison of the isotopic constitution of terrestrial and meteoritic sulfur. Physical Review 78:307-308.CrossRefGoogle Scholar
  21. Rees, C.E. 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta 37:1141-1162.CrossRefGoogle Scholar
  22. Rouxel, O.J., A. Bekker, and K.J. Edwards. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088-1091.PubMedCrossRefGoogle Scholar
  23. Rudnicki, M.D., H. Elderfield, and B. Spiro. 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochimica et Cosmochimica Acta 65:777-789.CrossRefGoogle Scholar
  24. Schidlowski, M., J.M. Hayes, and I.R. Kaplan. 1983. Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen and nitrogen. In J.W. Schopf (ed.), Earths Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ, pp. 149-186.Google Scholar
  25. Shen, Y., R. Buick, and D.E. Canfield. 2001. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77-81.PubMedCrossRefGoogle Scholar
  26. Sorensen, K.B. and D.E. Canfield. 2004. Annual fluctuations in sulfur isotope fractionation in the water column of a euxinic marine basin. Geochimica et Cosmochimica Acta 68:503-515.CrossRefGoogle Scholar
  27. Thode, H.G., J. Monster, and H.B. Dunford. 1961. Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta 25:150-174.CrossRefGoogle Scholar
  28. Tudge, A.P. and H.G. Thode. 1950. Thermodynamic properties of isotopic compounds of sulphur. Canadian Journal of Research B28:567-578.CrossRefGoogle Scholar
  29. Wortmann, U.G., S.M. Bernasconi, and M.E. Boettcher. 2001. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647-649.CrossRefGoogle Scholar

Section 7.9

  1. Broecker, W.S. 1970. A boundary condition on the evolution of atmospheric oxygen. Journal of Geophysical Research 75:3553-3557.CrossRefGoogle Scholar
  2. Craig, H. 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3:53-92.CrossRefGoogle Scholar
  3. Hayes, J.M. 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In J.W. Schopf (ed.), Earth’s Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ, pp. 291-301.Google Scholar
  4. Park, R. and S. Epstein. 1961. Metabolic fractionation of C13 and C12 in plants. Plant Physiology 36:133-138.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Schopf, J.W. (ed.). 1983. Earth’s Earliest Biosphere, Its Origin and Evolution. Princeton University Press, Princeton, NJ.Google Scholar

Section 7.10

  1. Evans, J.R., D.T. Sharkey, J.A. Berry, and G.D. Farquhar. 1986. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Australian Journal of Plant Physiology 13:281-292.CrossRefGoogle Scholar
  2. Fry. 2003. Listed above; see Section 7.8 readings.Google Scholar
  3. Fry et al. 1988. Listed above; see Section 7.1 readings.Google Scholar
  4. Fry, B., H. Gest, and J.M. Hayes. 1985. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. FEMS Microbiology Letters 27:227-232.PubMedCrossRefGoogle Scholar
  5. Fry, B., W. Ruf, H. Gest, and J.M. Hayes. 1988. Sulfur isotope effects associated with the non-biological oxidation of sulfide by O2 in aqueous solution. Chemical Geology 73:205-210.Google Scholar
  6. Hallberg, R.O. and L.E. Bagander. 1985. Fractionation of stable sulfur isotopes in a closed sulfuretum. In D.E. Caldwell, J.A. Brierley, and C.L. Brierley (eds.), Planetary Ecology. Van Nostrand Reinhold, New York, pp. 285-296.Google Scholar
  7. Harrison and Thode. 1958. Listed above; see Section 7.8 readings.Google Scholar
  8. Kaplan and Rittenberg. 1964. Listed above; see Section 7.8 readings. Mariotti et al. 1981. Listed above; see Section 7.1 readings.Google Scholar
  9. Rayleigh, 1902. Listed above; see Section 7.1 readings.Google Scholar
  10. Roeske, C.A. and M.H. O’Leary. 1984. Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275-6284.CrossRefGoogle Scholar
  11. Sharkey, T.D. and J.A. Berry. 1985. Carbon isotope fractionation of algae as influenced by an inducible CO2 concentrating mechanism. In W.J. Lucas and J.A. Berry (eds.), Inorganic Carbon Uptake by Aquatic Organisms. American Society of Plant Physiologists, Rockville MD. pp. 389- 401.Google Scholar
  12. Zhang et al. 1995. Listed above; see Section 7.1 readings.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Brian Fry
    • 1
  1. 1.Department of Oceanography and Coastal SciencesCoastal Ecology Institute School of the Coast and Environment LSUBaton RougeUSA

Personalised recommendations