Isotope Chi

  • Brian Fry

This chapter introduces a modeling approach to understand the interplay between isotope mixing and fractionation in the biosphere. The approach is named Isotope Chi (like Tai Chi) to represent the power in this new approach. An initial example deals with imaginary chocolate isotopes, to stimulate your appetite and to help you get in tune with how fractionation and mixing work together in isotope cycling. The next four sections use a more realistic example of photosynthesis and respiration in the sea to fully introduce the I Chi modeling. A final section switches to a terrestrial example with cows. The different examples develop the appreciation that isotope distributions in natural systems reflect the net balance between fractionation and mixing.


Oxygen Isotope Loss Model Fractionation Factor Heavy Isotope Exact Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Section 4.2

  1. Bender, M.L. and K.D. Grande. 1987. Production, respiration, and the isotope geochemistry of O2 in the upper water column. Global Biogeochemical Cycles 1:49-59.CrossRefGoogle Scholar
  2. Brandes, J.A. and A.H. Devol. 1997. Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochimica et Cosmochimica Acta 61:1793-1801.CrossRefGoogle Scholar
  3. Epstein, S. and L. Zeir. 1998. Oxygen and carbon isotopic compositions of gases respired by humans. Proceedings of the National Academy of Sciences USA 85:1727-1731.CrossRefGoogle Scholar
  4. Lane, G.A. and M. Dole. 1956. Fractionation of oxygen isotopes during respiration. Science 123:574-573.CrossRefPubMedGoogle Scholar
  5. Luz, B. and E. Barkan. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028-2031.CrossRefPubMedGoogle Scholar
  6. Marra, J. 2004. Phytoplankton and heterotrophic respiration in the ocean. U.S. JGOFS Newsletter 12:6,19.Google Scholar
  7. Marra, J. and R.T. Barber. 2004. Phytoplankton and heterotrophic respiration in the surface layer of the ocean. Geophysical Research Letters 31:L09314, doi:10.1029/2004GL019664, 2004.Google Scholar
  8. Quay, P.D., D.O. Wilbur, J.E. Richey, A.H. Devol, R. Benner, and R. Forsberg. 1995. The 18O : 16O of dissolved oxygen in rivers and lakes in the Amazon Basin: determining the ratio of respiration to photosynthesis rates in freshwaters. Limnology and Oceanography 40:718-729.CrossRefGoogle Scholar
  9. Roberts, B.J., M.E. Russ, and N.E. Ostrom. 2000. Rapid and precise determination of the δ18O of dissolved and gaseous dioxygen via gas chromatography-isotope ratio mass spectrometry. Environmental Science and Technology 34:2337-2341.CrossRefGoogle Scholar
  10. Sarma, V.V.S.S., O. Abe, S. Hashimoto, A. Hinuma, and T. Saino. 2005. Seasonal variations in triple oxygen isotopes and gross oxygen production in the Sagami Bay, central Japan. Limnology and Oceanography 50:544-552.CrossRefGoogle Scholar
  11. Young, E.D., A. Galy, and H. Nagahara. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochimica et Cosmochimica Acta 66:1095-1104.CrossRefGoogle Scholar

Section 4.3

  1. Benson, R. 1998. The Facts of Death. Glidrose Publications Ltd, London.Google Scholar
  2. Hart, E.A. and J.R. Lovvorn. 2002. Interpreting stable isotopes from macroinvertebrate foodwebs in saline wetlands. Limnology and Oceanography 47:580-584.CrossRefGoogle Scholar
  3. Herman, D.J. and P.W. Rundel. 1989. Nitrogen isotope fractionation in burned and unburned chaparral soils. Soil Science Society of America, Journal 53:1229-1236.CrossRefGoogle Scholar
  4. Mariotti, A., J.C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux. 1981. Experimental determination of nitrogen kinetic isotope fractions: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62:413-430.CrossRefGoogle Scholar
  5. Martinez del Rio, C. and B. Wolf. 2005. Mass-balance models for animal isotopic ecology. In J.M. Starck and T. Wang (eds.), Physiological and Ecological Adaptations to Feeding in Vertebrates. Science Publishers, Enfield NH, pp. 141-174.Google Scholar
  6. O’Reilly, C.M, R.E. Hecky, A.S. Cohen, and P.-D. Plisnier. 2002. Interpreting stable isotopes in food webs: Recognizing the role of time averaging at different trophic levels. Limnology and Oceanography 47:306-309.CrossRefGoogle Scholar
  7. Pennock, J.R., D.J. Velinsky, J.M. Ludlam, J.H. Sharp, and M.L. Fogel. 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for δ15N dynamics under bloom conditions. Limnology and Oceanography 41:451-459.CrossRefGoogle Scholar
  8. Rastetter, E.B., B.L. Kwiatkowski, and R.B. McKane. 2005.A stable isotope simulator that can be coupled to existing mass-balance models. Ecological Applications 15:1772-1782.CrossRefGoogle Scholar
  9. Shearer, G., J. Duffy, K.H. Kohl, and B. Commoner. 1974.A steady-state model of isotopic fractionation accompanying nitrogen transformations in soil. Soil Science Society of America, Journal 38:315-322.CrossRefGoogle Scholar

Section 4.5

  1. Hayes, J.M. 2004. An introduction to isotopic calculations.
  2. Sessions, A.L. and J.M. Hayes. 2004. Calculation of hydrogen isotopic fractionations in biogeochemical systems. Geochimica et Cosmochimica Acta 69:593-597.CrossRefGoogle Scholar

Section 4.6

  1. Hulston, J.R. and H.G. Thode. 1965.Variations in the S33, S34 and S36 contents of meteorites and their relation to chemical and nuclear effects. Journal of Geophysical Research 70:3475-3484.CrossRefGoogle Scholar

Section 4.7

  1. Macko, S.A., M.L. Fogel Estep, M.H. Engel, and P.E. Hare. 1986. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochimica et Cosmochimica Acta 50:2143-2146.CrossRefGoogle Scholar
  2. McCutchan, J.H. Jr., W.M. Lewis Jr., C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378-390.CrossRefGoogle Scholar
  3. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48:1135-1140.CrossRefGoogle Scholar
  4. Minson, D.J., M.M. Ludlow, and J.H. Troughton. 1975. Differences in natural carbon isotope ratios of milk and hair from cattle grazing tropical and temperate pastures. Nature 256: 602.CrossRefPubMedGoogle Scholar
  5. Olive, P.J.W., J.K. Pinnegar, N.V.C. Polunin, G. Richards, and R. Welch. 2003. Isotope trophicstep fractionation: A dynamic equilibrium model. Journal of Animal Ecology 72:608-617.CrossRefGoogle Scholar
  6. Post, D.M. 2002. Using stable isotope methods to estimate trophic position: Models, methods, and assumptions. Ecology 83:703-718.CrossRefGoogle Scholar
  7. Sponheimer, M., T. Robinson, L. Ayliffe, B. Roeder, J. Hammer, B. Passey, A. West, T. Cerling, D. Dearing, and J. Ehleringer. 2003a. Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology 13:80-87.CrossRefGoogle Scholar
  8. Sponheimer, M., T.F. Robinson, B.L. Roeder, B.H. Passey, L.K. Ayliffe, T.E. Cerling, M.D. Dearing, and J.R. Ehleringer. 2003b. An experimental study of nitrogen flux in llamas: is 14N preferentially excreted? Journal of Archaeological Science 30:1649-1655.CrossRefGoogle Scholar
  9. Steele, K.W. and R.M. Daniel. 1978. Fractionation of nitrogen isotopes by animals: a further complication to the use of variations in the natural abundance of 15N for tracer studies. Journal of Agricultural Science, Cambridge 90:7-9.CrossRefGoogle Scholar
  10. Sutoh, M., Y. Obara, and T. Yoneyama. 1993.The effects of feeding regimen and dietary sucrose supplementation on natural abundance of 15N in some components of ruminal fluid and plasma of sheep. Journal of Animal Science 71:226-231.PubMedGoogle Scholar
  11. Vander Zanden, J.M. and J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46:2061-2066.CrossRefGoogle Scholar
  12. West, A.G., L.K. Ayliffe, T.E. Cerlig, T.F. Robinson, B. Karren, M.D. Dearing, and J.R. Ehleringer. 2004. Short-term diet changes revealed using stable carbon isotopes in horse tail-hair. Functional Ecology 18:616-624.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Brian Fry
    • 1
  1. 1.Department of Oceanography and Coastal SciencesCoastal Ecology Institute School of the Coast and Environment LSUBaton RougeUSA

Personalised recommendations