Isotopes are forms of an element that differ in the number of neutrons. Isotopes function as natural dyes or colors, generally tracking the circulation of elements. Isotopes trace ecological connections at many levels, from individual microbes to whole landscapes. Isotope colors mix when source materials combine, and in a cyclic process that ecologists can appreciate, the process of isotope fractionation takes the mixed material and regenerates the sources by splitting or fractionating the mixtures. Elements and their isotopes circulate in the biosphere at large, but also in all smaller ecological plant, animal, or soil systems. Chapter 3 reviews this circulation for each of the HCNOS elements, then gives four short reviews that may stimulate you to think about how you could use isotopes in your own ecological research.


Stable Isotope Carbon Isotope Oxygen Isotope Isotope Fractionation Hydrogen Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Section 3.1

  1. Hoefs, J. 2004. Stable Isotope Geochemistry, 5th Edition. Springer-Verlag, New York.CrossRefGoogle Scholar
  2. Peterson, B.J. and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293-320.CrossRefGoogle Scholar


  1. Balesdent, J., C. Girardin, and A. Mariotti. 1993. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713-1721.CrossRefGoogle Scholar
  2. DeNiro, M.J. and S. Epstein. 1976. You are what you eat (plus a few ‰): The carbon isotope cycle in food chains. Geological Society of America Abstracts Program 8:834-835.Google Scholar
  3. Ehleringer, J.R. and T.E. Cerling. 2001. C3 and C4 photosynthesis. In H.A. Mooney and J. Canadell (eds.), Encyclopedia of Global Environmental Change, Volume II, John Wiley and Sons, New York, pp. 186-190.Google Scholar
  4. Friedli, H., H. Loetscher, H. Oeschger, U. Siegenthaler, and B. Stauffer. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237-328.CrossRefGoogle Scholar
  5. Fry, B. 2002. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25:264-271.CrossRefGoogle Scholar
  6. Lacroix, M. and F. Mosora. 1975.Variations du rapport isotopique 13C/12C dans le meatbolisme animal (Variations in the 13C/12C isotopic ratio in the animal metabolism). In Isotope Ratios as Pollutant Source and Behaviour Indicators. IAEA, Vienna, pp. 343-358.Google Scholar
  7. Mosora, F., M. Lacroix, and J. Puchesne. 1971. Recherches sur les variations du rapport isotopique 13C/12C, en function de la respiration et de la nature des tissues, chez les animaux superieurs. Compte Rendus de l’Academie des Sciences, Serie D 273:1752-1753.Google Scholar
  8. O’Leary, M.H. 1988. Carbon isotopes in photosynthesis. BioScience 38:328-336.CrossRefGoogle Scholar
  9. Popp, B.N., E.A. Laws, R.R. Bidigare, J.E. Dore, K.L. Hanson, and S.G. Wakeham. 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62:69-77.CrossRefGoogle Scholar


  1. Altabet, M.A. and R. Francois. 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles 8:103-116.CrossRefGoogle Scholar
  2. Casciotti, K.L., D.M. Sigman, M.G. Hastings, J.K. Bohlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry 74:4905- 4912.PubMedCrossRefGoogle Scholar
  3. Heaton, T.H.E. 1987. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmospheric Environment 21:843-852.CrossRefGoogle Scholar
  4. Hobbie, E.A., S.A. Macko, and H.H. Shugart. 1998. Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska. Chemical Geology 152:3-11.CrossRefGoogle Scholar
  5. Hobbie, E.A., S.A. Macko, and H.H. Shugart. 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353-360.CrossRefGoogle Scholar
  6. Liu, K.K. and I.R. Kaplan. 1989.The Eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnology and Oceanography 34:820-830.CrossRefGoogle Scholar
  7. Mariotti, A. 1983.Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685-687.CrossRefGoogle Scholar
  8. Mariotti, A., J.C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux, and P. Tardieux. 1981. Experimental determination of nitrogen kinetic isotope fractions: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62:413-430.CrossRefGoogle Scholar
  9. McClelland, J.W. and I. Valiela. 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43:577-585.CrossRefGoogle Scholar
  10. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of 15N along food chains. Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48:1135-1140.CrossRefGoogle Scholar
  11. Peters, K.E., R.E. Sweeney, and I.R. Kaplan. 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnology and Oceanography 23:598-604.CrossRefGoogle Scholar
  12. Saino, T. and A. Hattori. 1987. Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Research 34:807-827.CrossRefGoogle Scholar


  1. Cameron, E.M., G.E.M. Hall, J. Veizer, and H.R. Krouse. 1995. Isotopic and elemental hydrogeochemistry of a major river system—Fraser-River, British Columbia, Canada. Chemical Geology 122:149-169.CrossRefGoogle Scholar
  2. Canfield, D.E. 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochimica et Cosmochimica 65:1117-1124.CrossRefGoogle Scholar
  3. Fry, B., H. Gest, and J.M. Hayes. 1988. 34S/32S fractionation in sulfur cycles catalyzed by anaerobic bacteria. Applied and Environmental Microbiology 54:250-256.PubMedPubMedCentralGoogle Scholar
  4. Goldhaber, M.B. and I.R. Kaplan. 1975. Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Science 119:42-55.CrossRefGoogle Scholar
  5. Jorgensen, B.B. 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152-154.PubMedCrossRefGoogle Scholar
  6. Krouse, H.R. 1980. Sulphur isotopes in our environment. In P. Fritz and J. Ch. Fontes (eds.), Handbook of Environmental Isotope Geochemistry, vol. 1, The Terrestrial Environment, A. Elsevier, Amsterdam, pp. 435-471.Google Scholar
  7. Mayer, B. and H.R. Krouse. 1996. Prospects and limitations of an isotope tracer technique for understanding sulfur cycling in forested and agro-ecosystems. Isotopes in Environmental and Health Studies 32:191-201.PubMedCrossRefGoogle Scholar
  8. Rees, C.E., W.J. Jenkins, and J. Monster. 1978.The sulphur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta 42:377-381.CrossRefGoogle Scholar
  9. Richards, M.P., B.T. Fuller, M. Sponheimer, T. Robinson, and L. Ayliffe. 2003. Sulphur isotopes in palaeodietary studies: A review and results from a controlled feeding experiment. International Journal of Osteoarchaeology 13:37-45.CrossRefGoogle Scholar
  10. Trust, B.A. and B. Fry. 1992. Stable sulphur isotopes in plants: A review. Plant, Cell and Environment 15:1105-1110.CrossRefGoogle Scholar
  11. Vanstempvoort, D.R. and H.R. Krouse. 1994. Controls of δ18O in sulfate—Review of experimental data and application to specific environments. Environmental Geochemistry of Sulfide, ACS Symposium Series 550:446-480.CrossRefGoogle Scholar


  1. Epstein, S., P. Thompson, and C.J. Yapp. 1977. Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198:1209-1215.PubMedCrossRefGoogle Scholar
  2. Estep, M.F. and H. Dabrowski. 1980. Tracing food webs with stable hydrogen isotopes. Science 209:1537-1538.PubMedCrossRefGoogle Scholar
  3. Fogel, M.F. and T.C. Hoering. 1980. Biogeochemistry of the stable hydrogen isotopes. Geochimica et Cosmochimica Acta 44:1197-1206.CrossRefGoogle Scholar
  4. Friedman, I., A.C. Redfield, B. Schoen, and J. Harris. 1964. The variation of the deuterium content of natural waters in the hydrologic cycle. Reviews of Geophysics 2:177-224.CrossRefGoogle Scholar
  5. Fry, B. 2002. Listed above; see Section 3.1, Carbon readings.Google Scholar
  6. Gleason, J.D. and I. Friedman. 1970. Deuterium natural variations used as a biological tracer. Science 169:1085-1086.PubMedCrossRefGoogle Scholar
  7. Hobson, K.A., L. Atwell, and L.I. Wassenaar. 1999. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proceedings of the National Academy of Science 96:8003-8006.CrossRefGoogle Scholar
  8. Kendall, C. and T.B. Coplen. 2001. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrological Processes 15:1363-1393.CrossRefGoogle Scholar
  9. Nissenbaum, A. 1974. Deuterium content of humic acids from marine and non-marine environments. Marine Chemistry 2:59-63.CrossRefGoogle Scholar
  10. Pataki, D.E., S.E. Bush, and J.R. Ehleringer. 2005. Stable isotopes as a tool in urban ecology. In L.B. Baker, J.R. Ehleringer and D.E Pataki (eds.),Stable Isotopes and Biosphere-Atmosphere Interactions: Processes and Biological Controls. Elsevier,Amsterdam, pp. 199-216.CrossRefGoogle Scholar
  11. Sauer, P.E., T.I. Eglinton, J.M. Hayes, A. Schimmelmann, and A.L. Sessions. 2001. Compoundspecific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta 65:213-233.CrossRefGoogle Scholar
  12. Sharp, Z.D., V. Atudorei, H. Panarello, J. Fernandez, and C. Douthitt. 2003. Hydrogen isotope systematics of hair: archeological and forensic applications. Journal of Archaeological Science 30:1709-1716.CrossRefGoogle Scholar
  13. Smith, B.N. and H. Ziegler. 1990. Isotopic fractionation of hydrogen in plants. Botanica Acta 103:335-342.CrossRefGoogle Scholar
  14. Sternberg, L., M.J. DeNiro, and H. Ajie. 1984. Stable hydrogen isotope ratios of saponifiable lipids and celluolose nitrate from CAM, C3 and C4 plants. Phytochemistry 23:2475-2477.CrossRefGoogle Scholar
  15. Taylor, H.P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alterations and ore deposition. Economic Geology 69:843-882.CrossRefGoogle Scholar
  16. Tzedakis, P.C., K.H. Roucoux, L. de Abreu, and N.J. Shackleton. 2004. The duration of forest stages in Southern Europe and interglacial climate variability. Science 306:2231-2235.PubMedCrossRefGoogle Scholar
  17. Whiticar, M.J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161:291-314.CrossRefGoogle Scholar
  18. Yakir, D. 1992. Variations in the natural abundance of oxygen-18 and deuterium in plant carbohydrates. Plant Cell and Environment 15:1005-1020.CrossRefGoogle Scholar


  1. Bowen, G.J., L.I. Wassenaar, and K.A. Hobson. 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, doi:10.1007/s00442-004-1813-y.Google Scholar
  2. Hoffmann, G., M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six. 2004.A model of the Earth’s Dole effect. Global Biogeochemical Cycles 18, GB1008, doi:10.1029/2003GB002059.Google Scholar
  3. Koch, P.L. 1999. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573-613.CrossRefGoogle Scholar
  4. Yakir, D. 1992. Listed above; see Section 3.1, Hydrogen readings.Google Scholar
  5. Yakir, D. and M.J. DeNiro. 1990. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna-gibba 1. Plant Physiology 93:325-332.PubMedPubMedCentralCrossRefGoogle Scholar

Section 3.2

  1. Balesdent et al. 1987. Listed above; see Section 3.1, Carbon readings.Google Scholar
  2. Bellanger, B., S. Huon, F. Velasquez, V. Valles, C. Girardin, and A. Mariotti. 2004. Monitoring soil organic carbon erosion with δ13C and δ15N on experimental field plots in the Venezuelan Andes. Catena 58:125-150.CrossRefGoogle Scholar
  3. Cabana, G. and J.B. Rasmussen. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93:10844-10847.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Costanzo, S.D., M.J. O’Donohue, W.C. Dennison, N.R. Loneragan, and M. Thomas. 2001.A new approach for detecting and mapping sewage impacts. Marine Pollution Bulletin 42:149- 156.PubMedCrossRefGoogle Scholar
  5. Costanzo, S.D., J. Udy, B. Longstaff, and A. Jones. 2005. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: Changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Marine Pollution Bulletin 51:212-217.PubMedCrossRefGoogle Scholar
  6. Delegue, M.-A., M. Fuhr, D. Schwartz, A. Mariotti, and R. Nasi. 2001. Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129:106-113.CrossRefGoogle Scholar
  7. Farrell, J.W., T.F. Pedersen, S.E. Calvert, and B. Nielsen. 1995. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377:514-517.CrossRefGoogle Scholar
  8. Finlay, J., M.E. Power, and G. Cabana. 1999. Effects of water velocity on algal carbon isotope ratios: Implications for river food web studies. Limnology and Oceanography 44:1198-1203.CrossRefGoogle Scholar
  9. Hunt, J.M. 1970. The significance of carbon isotope variations in marine sediments. In G.D. Hobson and G.C. Speers (eds.), Advances in Organic Geochemistry, 1966. Pergamon, Tarrytown, NY, pp. 27-35.CrossRefGoogle Scholar
  10. Jennings, S. and K.J. Warr. 2003. Environmental correlates of large-scale spatial variation in the δ15N of marine animals. Marine Biology 142:1131-1140.Google Scholar
  11. Rogers, K.M. 2003. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Marine Pollution Bulletin 46:821-827.PubMedCrossRefGoogle Scholar
  12. Sackett, W.M. and R.R. Thompson. 1963. Isotopic organic carbon composition of recent continental derived clastic sediments of eastern Gulf coast, Gulf of Mexico. Bulletin of the American Association of Petroleum Geologists 47:525-528.Google Scholar
  13. Savage, C. 2005. Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. Ambio 34:145-150.PubMedCrossRefGoogle Scholar
  14. Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth’s ecosystems. Science 277:494-499.CrossRefGoogle Scholar
  15. Wiesenberg, G.L.B., J. Schwarzbauer, M.W.I. Schmidt, and L. Schwark. 2004. Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures. Organic Geochemistry 35:1371-1393.CrossRefGoogle Scholar

Section 3.3

  1. Ambrose, S.H. 2000. Controlled diet and climate experiments on nitrogen isotope ratios of rats. In S.H. Ambrose and M.A. Katzenberg (eds.), Biogeochemical Approaches to Paleodietary Analysis. Kluwer Academic, Hingham, MA, pp. 243-259.Google Scholar
  2. Arrouays, D., J. Balesdent, A. Mariotti, and C. Girardin. 1995. Modelling organic carbon turnover in cleared temperate forest soils converted to maize cropping by using 13C natural abundance measurements. Plant and Soil 173:191-196.CrossRefGoogle Scholar
  3. Beaudoin, C.P., W.M. Tonn, E.E. Prepas, and L.I. Wassenaar. 1999. Individual specialization and trophic adaptability of northern pike (Esox lucius):An isotope and dietary analysis. Oecologia 120:386-396.CrossRefGoogle Scholar
  4. Bowling, D.R., S.D. Sargent, B.D. Tanner, and J.R. Ehleringer. 2003.Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agricultural and Forest Meteorology 188:1-19.CrossRefGoogle Scholar
  5. Branstrator, D.K., G. Cabana, A. Mazumder, and J.B. Rasmussen. 2000. Measuring life-history omnivory in the opossum shrimp Mysis relicata, with stable nitrogen isotopes Limnology and Oceanography 45:463-467.CrossRefGoogle Scholar
  6. Brenna, J.T. 2001. Natural intramolecular isotope measurements in physiology: Elements of the case for an effort toward high-precision position-specific isotope analysis. Rapid Communications in Mass Spectrometry 15:1252-1262.PubMedCrossRefGoogle Scholar
  7. Carleton, S.A., B.O. Wolf, and C.M. del Rio. 2004. Keeling plots for hummingbirds: A method to estimate carbon isotope ratios of respired CO2 in small vertebrates. Oecologia 141:1-6.PubMedCrossRefGoogle Scholar
  8. Cerling, T.E., B.H. Passey, L.K. Ayliffe, C.S. Cook, J.R. Ehleringer, J.M. Harris, M.B. Dhidha, and S.M. Kasiki. 2004. Orphans’ tales: Seasonal dietary changes in elephants from Tsavo National Park, Kenya. Palaeogeography Palaeoclimatology and Palaeoecology 206:367-376.CrossRefGoogle Scholar
  9. Culik, B.M. and R.P. Wilson. 1992. Field metabolic rates of instrumented Adelie penguins using double-labeled water. Journal of Comparative Physiology B—Biochemical Systemic and Environmental Physiology 162:567-573.Google Scholar
  10. DeNiro, M.J. 1987. Stable isotopy and archaeology. American Scientist 75:182-191.Google Scholar
  11. DeNiro and Epstein. 1976. Listed above; see Section 3.1, Carbon readings.Google Scholar
  12. Estes, J.A., M.L. Riedman, M.M. Staedler, M.T. Tinker, and B.E. Lyon. 2003. Individual variation in prey selection by sea otters: Patterns, causes and implications. Journal of Animal Ecology 72:144-155.CrossRefGoogle Scholar
  13. Felicetti, L.A., C.C. Schwartz, R.O. Rye, M.A. Haroldson, K.A. Gunther, D.L. Phillips, and C.T. Robbins. 2003. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears. Canadian Journal of Zoology 81:763-770.CrossRefGoogle Scholar
  14. Fischer, H. and K. Wetzel. 2002. The future of 13C-breath tests. Food and Nutrition Bulletin 23:53-56.PubMedGoogle Scholar
  15. Fogel, M.L. and N. Tuross. 2003. Extending the limits of paleodietary studies of humans with compound specific carbon isotope analysis of amino acids. Journal of Archaeological Science 30:535-545.CrossRefGoogle Scholar
  16. Fogel, M.L., N. Tuross, B.J. Johnson, and G.H. Miller. 1997. Biogeochemical record of ancient humans. Organic Geochemistry 27:275-287.CrossRefGoogle Scholar
  17. Galloway, J.N., F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. Holland, D.M. Karl, A.F. Michaels, J.H. Porter, A.R. Townsend, and C.J. Vorosmarty. 2004. Nitrogen cycles: Past, present and future. Biogeochemistry 70:153-226.CrossRefGoogle Scholar
  18. Galloway, J.N., H. Levy, and P.S. Kashibhatla. 1994. Year 2020—Consequences of populationgrowth and development on deposition of oxidized nitrogen. Ambio 23:120-123.Google Scholar
  19. Gotaas, G., E. Milne, P. Haggarty, and N.J.C. Tyler. 1997. Use of feces to estimate isotopic abundance in doubly labeled water studies in reindeer in summer and winter. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 273:R1451-R1456.Google Scholar
  20. Guiguer, K.R.R.A., J.D. Reist, M. Power, and J.A. Babaluk. 2002. Using stable isotopes to confirm the trophic ecology of Arctic charr morphotypes from Lake Hazen, Nunavut, Canada. Journal of Fish Biology 60:348-362.CrossRefGoogle Scholar
  21. Hadwen, W.L. and S.E. Bunn. 2004.Tourists increase the contribution of autochthonous carbon to littoral zone food webs in oligotrophic dune lakes. Marine and Freshwater Research 55: 701-708.CrossRefGoogle Scholar
  22. Hayes, J.M. 2001. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In J.W. Valley and D.R. Cole (eds.), Stable Isotope Geochemistry, Reviews in Mineralogy and Geochemistry, vol. 43. Mineralogical Society of America,Washington, D.C., pp. 225-278.Google Scholar
  23. Hobbie, E.A., S.A. Macko, and H.H. Shugart. 1998. Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska. Chemical Geology 152:3-11.CrossRefGoogle Scholar
  24. Hobbie, E.A., S.A. Macko, and H.H. Shugart. 1999. Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120:405-415.CrossRefGoogle Scholar
  25. Jackson, J.B.C, M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R. H., Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner, and R.R.Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629-638.PubMedCrossRefGoogle Scholar
  26. Katz, J.J. 1960. Chemical and biological studies with deuterium. American Scientist 48:544-580.Google Scholar
  27. Kelly, J.F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78:1-27.CrossRefGoogle Scholar
  28. Kidd, K.A. 1998. Use of stable isotope ratios in freshwater and marine biomagnification studies. In J. Rose (ed.), Environmental Toxicology: Current Developments. Gordon and Breach Science, Amsterdam, pp. 359-378.Google Scholar
  29. Lee-Thorp, J.A., M. Sponheimer, and N.H. Van der Merwe. 2003. What do stable isotopes tell us about hominid dietary and ecological niches in the Pliocene? International Journal of Osteoarchaeology 13:104-113.CrossRefGoogle Scholar
  30. Los Gatos Research.
  31. Mayntz, D., D. Raubenheimer, M. Salomon, S. Toft, and S.J. Simpson. 2005. Nutrient-specific foraging in invertebrate predators. Science 307:111-113.PubMedCrossRefGoogle Scholar
  32. McCutchan, J.H. Jr., W.M. Lewis Jr., C. Kendall, and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378-390.CrossRefGoogle Scholar
  33. Moseman, S.M., L.A. Levin, C. Currin, and C. Forder. 2004. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California. Estuarine Coastal and Shelf Science 60:755-770.CrossRefGoogle Scholar
  34. Murnick, D.E. and B.J. Peer. 1994. Laser-based analysis of carbon isotope ratios. Science 263:945-947.PubMedCrossRefGoogle Scholar
  35. Pauly, D., V. Christensen, R. Froese, and M.L. Palomares. 2000. Fishing down aquatic food webs. American Scientist 88:46-51.CrossRefGoogle Scholar
  36. Ponsard, S. and R. Arditi. 2000. What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81:852-864.Google Scholar
  37. Post, D.M. 2003. Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84:1298-1310.CrossRefGoogle Scholar
  38. Rice, S.K., B. Westerman, and R. Federici. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecology 174: 97-107.CrossRefGoogle Scholar
  39. Riddell, M.C., O. Bar-Or, H.P. Schwarcz, and G.J.F. Heigenhauser. 2000. Substrate utilization in boys during exercise with [C-13]-glucose ingestion. European Journal of Applied Physiology 83:441-448.PubMedCrossRefGoogle Scholar
  40. Schoeninger, M.J., J. Moore, and J.M. Sept. 1999. Subsistence strategies of two “savanna” chimpanzee populations: The stable isotope evidence. American Journal of Primatology 49:297-314.PubMedCrossRefGoogle Scholar
  41. Shearer, G. and D.H. Kohl. 1988. Estimates of N2 fixation in ecosystems:The need for and basis of the 15N natural abundance method. In P.W. Rundel, J.R. Ehleringer, and K.A. Nagy (eds.), Stable Isotopes in Ecological Research. Springer-Verlag, New York, pp. 342-373.Google Scholar
  42. Sponheimer, M. and J.A. Lee-Thorp. 1999. Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 283:368-370.PubMedCrossRefGoogle Scholar
  43. Sponheimer, M., T. Robinson, L. Ayliffe, B. Roeder, J. Hammer, B. Passey, A. West, T. Cerling, D. Dearing, and J. Ehleringer. 2003. Nitrogen isotopes in mammalian herbivores: Hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology 13:80-87.CrossRefGoogle Scholar
  44. Stewart, A.R., S.N. Luoma, C.E. Schlekat, M.A. Doblin, and K.A. Hieb. 2004. Food web pathway determines how selenium affects aquatic ecosystems: A San Francisco Bay case study. Environmental Science and Technology 38:4519- 4526.PubMedCrossRefGoogle Scholar
  45. Tieszen, L.L. and T. Fagre. 1993. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In J.B. Lambert and G. Grupe (eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer Verlag, New York, pp. 121-155.CrossRefGoogle Scholar
  46. van der Merwe, N.J. 1982. Carbon isotopes, photosynthesis, and archaeology. American Scientist 70:596-605.Google Scholar
  47. Vander Zanden, J.M. and J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46:2061-2066.CrossRefGoogle Scholar
  48. Vander Zanden, M.J., J.M. Casselman, and J.B. Rasmussen. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464-467.CrossRefGoogle Scholar
  49. Vander Zanden, M.J., S. Chandra, B.C. Allen, J.E. Reuter, and C.R. Goldman. 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) Basin. Ecosystems 6:274-288.CrossRefGoogle Scholar
  50. Vander Zanden, M.J., J.D. Olden, J.H. Thorne, and N.E. Mandrak. 2004. Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes. Ecological Applications 14:132-148.CrossRefGoogle Scholar
  51. Yoshinaga, J., T. Suzuki, T. Hongo, M. Minagawa, R. Ohtsuka, T. Kawabe, T. Inaoka, and T. Akimichi. 1992. Mercury concentration correlates with the nitrogen stable isotope ratio in animal food of Papuans. Ecotoxicology and Environmental Safety 24:37- 45.PubMedCrossRefGoogle Scholar

Section 3.4

  1. Fry, B. 1981. Natural stable carbon isotope tag traces Texas shrimp migrations. Fishery Bulletin 79:337-345.Google Scholar
  2. Fry, B. 1983. Fish and shrimp migrations in the northern Gulf of Mexico analyzed using stable C, N, and S isotope ratios. Fishery Bulletin 81:789-801.Google Scholar
  3. Hobson, K.A. 1999. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 120:314-326.CrossRefGoogle Scholar
  4. Hobson, K.A. 2002. Incredible journeys. Science 295:981-982.PubMedCrossRefGoogle Scholar
  5. Kelly, J.F., V. Atudorei, Z.D. Sharp, and D.M. Finch. 2002. Insights into Wilson’s Warbler migration from analyses of hydrogen stable-isotope ratios. Oecologia 130:216-221. CrossRefGoogle Scholar
  6. Killingley, J.S. 1979. Migrations of California gray whales tracked by oxygen-18 variations in their epizoic barnacles. Science 207:759-760.CrossRefGoogle Scholar
  7. Killingley, J.S. and M. Lutcavage. 1983. Loggerhead turtle movements reconstructed from 18O and 13C profiles from commensal barnacle shells. Estuarine Coastal and Shelf Science 16:345-349.CrossRefGoogle Scholar
  8. Kline, T.C. Jr., J.J. Goering, O.A. Mathisen, P.H. Poe, and P.L. Parker. 1990. Recycling of elements transported upstream by runs of Pacific salmon: I. δ15N and δ13C evidence in Sashin Creek, southeastern Alaska. Canadian Journal of Fisheries and Aquatic Science 47:136-144.CrossRefGoogle Scholar
  9. Naiman, R.J., R.E. Bilby, D.E. Schindler, and J.M. Helfield. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399-417.CrossRefGoogle Scholar
  10. Podlesak, D.W., S.R. McWilliams, and K.A. Hatch. 2004. Stable isotopes in breath, blood, feces and feathers can indicate intr-individual changes in the diet of migratory songbirds. Oecologia DOI:10.1007/s00442-004-1737-6.Google Scholar
  11. Rubenstein, D.R. and K.A. Hobson. 2004. From birds to butterflies: Animal movement patterns and stable isotopes. Trends in Ecology and Evolution 19:256-263.PubMedCrossRefGoogle Scholar
  12. Rubenstein, D.R., C.P. Chamberlain, R.T. Holmes, M.P. Ayres, J.R. Waldbauer, G.R. Graves, and N.C. Tuross. 2002. Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295:1062-1065.PubMedCrossRefGoogle Scholar
  13. Sapolsky, R.M. 2002. A Primate’s Memoir: A Neuroscientist’s Unconventional Life Among the Baboons. Simon & Schuster Adult, New York.Google Scholar
  14. Schaller, G.B. 1966. The Year of the Gorilla. University of Chicago Press, Chicago.Google Scholar
  15. Schell, D.M., S.M. Saupe, and H. Haubenstock. 1989. Bowhead whale (Balaena-Mysticetus) growth and feeding as estimated by δ13C techniques. Marine Biology 103:433-443.CrossRefGoogle Scholar
  16. Taylor, H.P. 1974. Listed above; see Section 3.1, Hydrogen readings.Google Scholar
  17. Wassenaar, L.I. and K.A. Hobson. 1998. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence. Proceedings of the National Academy of Sciences of the United States of America 95:15436-15439.PubMedPubMedCentralCrossRefGoogle Scholar

Section 3.5

  1. Bender, M. 1968. Mass spectrometric studies of carbon 13 variations in corn and other grasses. Radiocarbon 10:468-472.Google Scholar
  2. Boetius, A., K. Ravenschlag, C.J. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Amann, B.B. Jorgensen, U. Witte, and O. Pfaffkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623-626.PubMedCrossRefGoogle Scholar
  3. Boschker, H.T.S. and J.J. Middelburg. 2002. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology 40:85-95.PubMedCrossRefGoogle Scholar
  4. Boschker, H.T.S., S.C. Nold, P. Wellsbury, D. Bos, W. de Graaf, R. Pel, R.J. Parkes, and T.E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801-804.CrossRefGoogle Scholar
  5. Bousquet, P., P. Peylin, P. Ciais, C. Le Quere, P. Friedlingstein, and P.P. Tans. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290:1342-1346.PubMedCrossRefGoogle Scholar
  6. Boutton, T.W., S.R. Archer, and A.J. Midwood. 1999. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical savanna. Rapid Communications in Mass Spectrometry 13:1263-1277.PubMedCrossRefGoogle Scholar
  7. Brooks, J.R., N. Buchmann, S.L. Phillips, B. Ehleringer, R.D. Evans, L.A. Martinmelli, W.T. Pockman, D. Sandquist, J.P. Sparks, L. Sperry, D. Williams, and J.R. Ehleringer. 2002. Heavy and light beer: A carbon isotope approach to detecting C4 carbon in beers from different origins, styles, and prices. Journal of Agricultural and Food Chemistry 50:6413-6418.PubMedCrossRefGoogle Scholar
  8. Carlson, R.W., R.E. Johnson, and M.S. Anderson. 2000. Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286:97-99.CrossRefGoogle Scholar
  9. Chambers, R.M., J.W. Fourqurean, S.A. Macko, and R. Hoppenot. 2001. Biogeochemical effects of iron availability on primary producers in a shallow marine carbonate environment. Limnology and Oceanography 46:1278-1286.CrossRefGoogle Scholar
  10. Chimner, R.A. and D.J. Cooper. 2004. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado USA. Plant and Soil 260:225-236.CrossRefGoogle Scholar
  11. Dawson, T.E., S. Mambelli, A.H. Plamboeck, P.H. Templer, and K.P. Tu. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33:507-559.CrossRefGoogle Scholar
  12. Ehleringer, J.R. and T.E. Cerling. 2001. C3 and C4 photosynthesis. In H.A. Mooney and J. Canadell (eds.), Encyclopedia of Global Environmental Change, Vol. II. John Wiley and Sons, New York, pp. 186-190.Google Scholar
  13. Fung, I., C.B. Field, J.A. Berry, M.V. Thompson, J.T. Randerson, C.M. Malmstroem, P.M. Vitousek, G.J. Collatz, P.J. Sellers, D.A. Randall, A.S. Denning, F. Badeck, and J. John. 1997.Google Scholar
  14. Carbon-13 exchanges between the atmosphere and biosphere. Global Biogeochemical Cycles 11:507-533.Google Scholar
  15. Ghosh, P. and W.A. Brand. 2003. Stable isotope ratio mass spectrometry in global climate change research. International Journal of Mass Spectrometry 228:1-33.CrossRefGoogle Scholar
  16. Hoffmann, G., M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six. 2004.A model of the Earth’s Dole effect. Global Biogeochemical Cycles 18:GB1008, doi:10.1029/2003GB002059.Google Scholar
  17. Keeling, C.D. 1958.The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta 13:322-334.CrossRefGoogle Scholar
  18. Lammer, H., W. Stumptner, G.J. Molina-Cuberos, S.J. Bauer, and T. Owen. 2000. Nitrogen isotope fractionation and its consequence for Titan’s atmospheric evolution. Planetary and Space Science 48:529-543.CrossRefGoogle Scholar
  19. Mortzazvi, B., J. Chanton, J.L. Prater, A.C. Oishi, R. Oren, and G. Kaul. 2005. Temporal variability in the 13C of respired CO2 in a pine and hardwood forest subject to identical climatic and edaphic conditions. Oecologia 142:57-69.CrossRefGoogle Scholar
  20. Nakagawa, F., U. Tsunogai, T. Gamo, and N. Yoshida. 2004. Stable isotopic compositions and fractionations of carbon monoxide at coastal and open ocean stations in the Pacific. Journal of Geophysical Research-Oceans 109:C06016.CrossRefGoogle Scholar
  21. Oakes, J.M. and R.M. Connolly. 2004. Causes of sulfur isotope variability in the seagrass Zostera capricorni. Journal of Experiment Marine Biology and Ecology 302:153-164.CrossRefGoogle Scholar
  22. O’Leary. 1988. Listed above; see Section 3.1, Carbon readings.Google Scholar
  23. Orphan, V.J., C.H. House, K.-U. Hinrichs, K.D. McKeegan, and E.F. DeLong. 2001. Methaneconsuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484-487.PubMedCrossRefGoogle Scholar
  24. Ostrom, N.E., M.E. Russ, B.N. Popp, T.M. Rust, and D.M. Karl. 2000. Mechanisms of N2O production in the subtropical North Pacific based on determinations of the isotopic abundances of N2O and O2. Chemosphere—Global Change Science 2:281-290.CrossRefGoogle Scholar
  25. Pataki, D.E., J.R. Ehleringer, L.B. Flanagan, D. Yakir, D.R. Bowling, C.J. Still, N. Buchmann, J.O. Kaplan, and J.A. Berry. 2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles 17:doi:10.1029/2001GB001850.Google Scholar
  26. Pearson, A., A.L. Sessions, K.J. Edwards, and J.M. Hayes. 2004. Phylogenetically specific separation of rRNA from prokaryotes for isotopic analysis. Marine Chemistry 92:295-306.CrossRefGoogle Scholar
  27. Pel, R., H. Hoogveld, and V. Floris. 2003. Using the hidden isotopic heterogeneity in phytoand zooplankton to unmask disparity in trophic carbon transfer. Limnology and Oceanography 48:2200-2207.CrossRefGoogle Scholar
  28. Snover, A.K., P.D. Quay, and W.M. Hao. 2000. The D/H content of methane emitted from biomass burning. Global Biogeochemical Cycles 14:11-24.CrossRefGoogle Scholar
  29. Trolier, M., J.W.C. White, P.P. Tans, K.A. Masarie, and P.A. Gemery. 1996. Monitoring the isotopic composition of atmospheric CO2: measurements from the NOAA global air sampling network. Journal of Geophysical Research 101:25897-25916.CrossRefGoogle Scholar
  30. Tyler, S.C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. Journal of Geophysical Research 91:13232-13238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Brian Fry
    • 1
  1. 1.Department of Oceanography and Coastal SciencesCoastal Ecology Institute School of the Coast and Environment LSUBaton RougeUSA

Personalised recommendations