Skip to main content

Cellular Dynamics of NF-κB Associated Proteins

  • Chapter
NF-κB/Rel Transcription Factor Family

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 696 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-[kappa] B activity. Annu Rev Immunol 2000; 18:621–663.

    Article  PubMed  CAS  Google Scholar 

  2. Rothwarf DM, Karin M. The NF-kappa B activation pathway: A paradigm in information transfer from membrane to nucleus. Sci STKE 1999; 1999(5):RE1.

    Article  PubMed  CAS  Google Scholar 

  3. Zabel U, Henkel T, Silva MS et al. Nuclear uptake control of NF-kappa B by MAD-3, an I kappa B protein present in the nucleus. EMBO J 1993; 12(1):201–211.

    PubMed  CAS  Google Scholar 

  4. Zabel U, Baeuerle PA. Purified human I kappa B can rapidly dissociate the complex of the NF-kappa B transcription factor with its cognate DNA. Cell 1990; 61(2):255–265.

    Article  PubMed  CAS  Google Scholar 

  5. Huxford T, Huang DB, Malek S et al. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 1998; 95(6):759–770.

    Article  PubMed  CAS  Google Scholar 

  6. Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell 1998; 95(6):749–758.

    Article  PubMed  CAS  Google Scholar 

  7. Suyang H, Phillips R, Douglas I et al. Role of unphosphorylated, newly synthesized I kappa B beta in persistent activation of NF-kappa B. Mol Cell Biol 1996; 16(10):5444–5449.

    PubMed  CAS  Google Scholar 

  8. Chen Y, Wu J, Ghosh G. KappaB-Ras binds to the unique insert within the ankyrin repeat do main of IkappaBbeta and regulates cytoplasmic retention of IkappaBbeta x NF-kappaB complexes. J Biol Chem 2003; 278(25):23101–23106.

    Article  PubMed  CAS  Google Scholar 

  9. Kerr LD, Inoue J, Davis N et al. The rel-associated pp40 protein prevents DNA binding of Rel and NF-kappa B: Relationship with I kappa B beta and regulation by phosphorylation. Genes Dev 1991; 5(8):1464–1476.

    PubMed  CAS  Google Scholar 

  10. Arenzana-Seisdedos F, Thompson J, Rodriguez MS et al. Inducible nuclear expression of newly-synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol 1995; 15(5):2689–2696.

    PubMed  CAS  Google Scholar 

  11. Arenzana-Seisdedos F, Turpin P, Rodriguez M et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J Cell Sci 1997; 110 (Pt 3):369–378.

    PubMed  CAS  Google Scholar 

  12. Johnson C, Van Antwerp D, Hope TJ. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. EMBO J 1999; 18(23):6682–6693.

    Article  PubMed  CAS  Google Scholar 

  13. Huang TT, Kudo N, Yoshida M et al. A nuclear export signal in the N-terminal regulatory do main of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha com plexes. Proc Natl Acad Sci USA 2000; 97(3):1014–1019.

    Article  PubMed  CAS  Google Scholar 

  14. Tarn WF, Lee LH, Davis L et al. Cytoplasmic sequestration of rel proteins by IkappaBalpha requires CRM1-dependent nuclear export. Mol Cell Biol 2000; 20(6):2269–2284.

    Article  Google Scholar 

  15. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–660.

    Article  PubMed  CAS  Google Scholar 

  16. Fukuda M, Asano S, Nakamura T et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390(6657):308–311.

    Article  PubMed  CAS  Google Scholar 

  17. Sachdev S, Hoffmann A, Hannink M. Nuclear localization of IkappaB alpha is mediated by the second ankyrin repeat: The IkappaB alpha ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol Cell Biol 1998; 18(5):2524–2534.

    PubMed  CAS  Google Scholar 

  18. Turpin P, Hay RT, Dargemont C. Characterization of IkappaBalpha nuclear import pathway. J Biol Chem 1999; 274(10):6804–6812.

    Article  PubMed  CAS  Google Scholar 

  19. Tarn WF, Sen R. IkappaB family members function by different mechanisms. J Biol Chem 2001; 276(11):7701–7704.

    Article  Google Scholar 

  20. Harhaj EW, Sun SC. Regulation of RelA subcellular localization by a putative nuclear export signal and p50. Mol Cell Biol 1999; 19(10):7088–7095.

    PubMed  CAS  Google Scholar 

  21. Tarn WF, Wang W, Sen R. Cell-specific association and shuttling of IkappaBalpha provides a mechanism for nuclear NF-kappaB in B lymphocytes. Mol Cell Biol 2001; 21(14):4837–4846.

    Article  Google Scholar 

  22. Hay DC, Kemp GD, Dargemont C et al. Interaction between hnRNPAl and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription. Mol Cell Biol 2001; 21(10):3482–3490.

    Article  PubMed  CAS  Google Scholar 

  23. Lee SH, Hannink M. Characterization of the nuclear import and export functions of Ikappa B(epsilon). J Biol Chem 2002; 277(26):23358–23366.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson JE, Phillips RJ, Erdjument-Bromage H et al. I kappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 1995; 80(4):573–582.

    Article  PubMed  CAS  Google Scholar 

  25. Tran K, Merika M, Thanos D. Distinct functional properties of IkappaB alpha and IkappaB beta. Mol Cell Biol 1997; 17(9):5386–5399.

    PubMed  CAS  Google Scholar 

  26. Chen Y, Vallee S, Wu J et al. Inhibition of NF-kappaB activity by IkappaBbeta in association with kappaB-Ras. Mol Cell Biol 2004; 24(7):3048–3056.

    Article  PubMed  CAS  Google Scholar 

  27. Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol 2002; 3(1):20–26.

    Article  PubMed  CAS  Google Scholar 

  28. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18(18):2195–2224.

    Article  PubMed  CAS  Google Scholar 

  29. Yaron A, Hatzubai A, Davis M et al. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 1998; 396(6711):590–594.

    Article  PubMed  CAS  Google Scholar 

  30. Wu C, Ghosh S. beta-TrCP mediates the signal-induced ubiquitination of IkappaBbeta. J Biol Chem 1999; 274(42):29591–29594.

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki H, Chiba T, Suzuki T et al. Homodimer of two F-box proteins betaTrCPl or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination. J Biol Chem 2000; 275(4):2877–2884.

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez MS, Thompson J, Hay RT et al. Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation. J Biol Chem 1999; 274(13):9108–9115.

    Article  PubMed  CAS  Google Scholar 

  33. Huang TT, Miyamoto S. Postrepression activation of NF-kappaB requires the amino-terminal nuclear export signal specific to IkappaBalpha. Mol Cell Biol 2001; 21(14):4737–4747.

    Article  PubMed  CAS  Google Scholar 

  34. Renard P, Percherancier Y, Kroll M et al. Inducible NF-kappaB activation is permitted by simul taneous degradation of nuclear IkappaBalpha. J Biol Chem 2000; 275(20):15193–15199.

    Article  PubMed  CAS  Google Scholar 

  35. Nelson DE, Ihekwaba AE, Elliott M et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004; 306(5696):704–708.

    Article  PubMed  CAS  Google Scholar 

  36. Davis M, Hatzubai A, Andersen JS et al. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002; 16(4):439–451.

    Article  PubMed  CAS  Google Scholar 

  37. Nakayama K, Hatakeyama S, Maruyama S et al. Impaired degradation of inhibitory subunit of NF-kappa B (I kappa B) and beta-catenin as a result of targeted disruption of the beta-TrCPl gene. Proc Natl Acad Sci USA 2003; 100(15):8752–8757.

    Article  PubMed  CAS  Google Scholar 

  38. Birbach A, Gold P, Binder BR et al. Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 2002; 277(13): 10842–10851.

    Article  PubMed  CAS  Google Scholar 

  39. Verma UN, Yamamoto Y, Prajapati S et al. Nuclear role of I kappa B Kinase-gamma/NF-kappa B essential modulator (IKK gamma/NEMO) in NF-kappa B-dependent gene expression. J Biol Chem 2004; 279(5):3509–3515.

    Article  PubMed  CAS  Google Scholar 

  40. Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25(6):280–288.

    Article  PubMed  CAS  Google Scholar 

  41. Pomerantz JL, Baltimore D. Two pathways to NF-kappaB. Mol Cell 2002; 10(4):693–695.

    Article  PubMed  CAS  Google Scholar 

  42. Huang TT, Wuerzberger-Davis SM, Wu ZH et al. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2003; 115(5):565–576.

    Article  PubMed  CAS  Google Scholar 

  43. Hay RT. SUMO: A history of modification. Mol Cell 2005; 18(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  44. Anest V, Hanson JL, Cogswell PC et al. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 2003; 423(6940):659–663.

    Article  PubMed  CAS  Google Scholar 

  45. Yamamoto Y, Verma UN, Prajapati S et al. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 2003; 423(6940):655–659.

    Article  PubMed  CAS  Google Scholar 

  46. Zhu J, McKeon F. NF-AT activation requires suppression of Crml-dependent export by calcineurin. Nature 1999; 398(6724):256–260.

    Article  PubMed  CAS  Google Scholar 

  47. Chen L, Fischle W, Verdin E et al. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293(5535):1653–1657.

    Article  CAS  Google Scholar 

  48. Kiernan R, Bres V, Ng RW et al. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003; 278(4):2758–2766.

    Article  PubMed  CAS  Google Scholar 

  49. Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 2002; 21(23):6539–6548.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Banerjee, D., Sen, R. (2006). Cellular Dynamics of NF-κB Associated Proteins. In: Liou, HC. (eds) NF-κB/Rel Transcription Factor Family. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33573-0_4

Download citation

Publish with us

Policies and ethics