Skip to main content

Receptors and Adaptors for NF-κB Signaling

  • Chapter
NF-κB/Rel Transcription Factor Family

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725–734.

    Article  PubMed  CAS  Google Scholar 

  2. Kucharczak J, SM J, Fan Y et al. To be, or not to be: NF-kappaB is the answer—role of Rel/ NF-kappaB in the regulation of apoptosis. Oncogene 2003;22:8961–8982.

    Article  PubMed  CAS  Google Scholar 

  3. Sun S-C, Xiao G. Deregulation of NF-kB and its upstream kinases in cancer. Cancer and Metastasis Reviews 2003;22:405–422.

    Article  PubMed  CAS  Google Scholar 

  4. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2003;206:193–199.

    Article  CAS  Google Scholar 

  5. Janeway CA, Travers P, Walport M et al. Immunobiology 5 ed. New York: Garland, 2001.

    Google Scholar 

  6. Ruland J, Mak TW. Transducing signals from antigen receptors to nuclear factor kappaB. Rev Immunol 2003;193:93–100.

    Article  CAS  Google Scholar 

  7. Jun JE, Goodnow CC. Scaffolding of antigen receptors for immunogenic versus tolerogenic signal ing. Nat Immunol 2003;4:1057–1064.

    Article  PubMed  CAS  Google Scholar 

  8. Tomlinson MG, Lin J, Weiss A. Lymphocytes with a complex: Adapter proteins in antigen recep tor signaling. Today Immunol 2000;21:584–591.

    Article  CAS  Google Scholar 

  9. Wilkinson B, Wang H, Rudd CE. Positive and negative adaptors in T-cell signalling. Immunology 2004; 111:368–374.

    Article  PubMed  CAS  Google Scholar 

  10. Herndon TM, Shan XC, Tsokos GC et al. ZAP-70 and SLP-76 regulate protein kinase C-theta and NF-kappa B activation in response to engagement of CD3 and CD28. J Immunol 2001;166:654–664.

    Google Scholar 

  11. Costello PS, Walters AE, Mee PJ et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc Natl Acad Sci USA 1999;96:3035–3040.

    Article  PubMed  CAS  Google Scholar 

  12. Villalba M, Coudronniere N, Deckert M et al. A novel functional interaction between Vav and PKCtheta is required for TCR-induced T cell activation. Immunity 2000;12:151–160.

    Article  PubMed  CAS  Google Scholar 

  13. Bi K, Tanaka Y, Coudronniere N et al. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol 2001;2:556–563.

    Article  PubMed  CAS  Google Scholar 

  14. Reynolds LF, Smyth LA, Norton T et al. Vavl transduces T cell receptor signals to the activation of phospholipase C-gammal via phosphoinositide 3-kinase-dependent and-independent pathways. J Exp Med 2002;195(9):1103–1114.

    Article  PubMed  CAS  Google Scholar 

  15. Piccolella E, Spadaro F, Ramoni C et al. Vav-1 and the IKK alpha subunit of I kappa B kinase functionally associate to induce NF-kappa B activation in response to CD28 engagement. J Immunol 2003;170(6):2895–2903.

    PubMed  CAS  Google Scholar 

  16. Simeoni L, Kliche S, Lindquist J et al. Adaptors and linkers in T and B cells. Curr Opin Immunol 2004;16(3):304–313.

    Article  PubMed  CAS  Google Scholar 

  17. Iwashima M, Takamatsu M, Yamagishi H et al. Genetic evidence for She requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci USA 2002;99(7):4544–4549.

    Article  PubMed  CAS  Google Scholar 

  18. Ruland J, Duncan GS, Wakeham A et al. Differential requirement for Maltl in T and B cell antigen receptor signaling. Immunity 2003;19(5):749–758.

    Article  PubMed  CAS  Google Scholar 

  19. Su TT, Guo B, Kawakami Y et al. PKC-beta controls I kappa B kinase lipid rait recruitment and activation in response to BCR signaling. Nat Immunol 2002;3:780–786.

    PubMed  CAS  Google Scholar 

  20. Saijo K, Mecklenbrauker I, Santana A et al. Protein kinase C beta controls nuclear factor kappaB activation in B cells through selective regulation of the IkappaB kinase alpha. J Exp Med 2002;195:1647–1652.

    Article  PubMed  CAS  Google Scholar 

  21. Che T, You Y, Wang D et al. MALTl/paracaspase is a signaling component downstream of CARMA1 and mediates T cell receptor-induced NF-kappaB activation. J Biol Chem 2004;279(16):15870–15876.

    Article  PubMed  CAS  Google Scholar 

  22. Gaide O, Favier B, Legler DF et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation. Nat Immunol 2002;3:836–843.

    Article  PubMed  CAS  Google Scholar 

  23. Sun L, Deng L, Ea C-K et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activa tion by BCL10 and MALT1 in T lymphocytes. Mol Cell 2004;14:289–301.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou H, Wertz I, O’Rourke K et al. Bcl 10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 2004;427:167–171.

    Article  PubMed  CAS  Google Scholar 

  25. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335–376.

    Article  PubMed  CAS  Google Scholar 

  26. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135–145.

    Article  PubMed  CAS  Google Scholar 

  27. Schnare M, Barton GM, Holt AC et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001;2:947–950.

    Article  PubMed  CAS  Google Scholar 

  28. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499–511.

    Article  PubMed  CAS  Google Scholar 

  29. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001;413:78–83.

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto M, Sato S, Hemmi H et al. Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 2002;420:324–329.

    Article  PubMed  CAS  Google Scholar 

  31. Hoebe K, Du X, Georgel P et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003;424(6950):743–748.

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto M, Sato S, Hemmi H et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003;301(5633):640–643.

    Article  PubMed  CAS  Google Scholar 

  33. Oshiumi H, Sasai M, Shida K et al. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 2003;278(50):49751–49762.

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto M, Sato S, Hemmi H et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003;4(11):1144–1150.

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki N, Suzuki S, Duncan GS et al. Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4. Nature 2002;416:750–756.

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki N, Suzuki S, Yeh W-C. IRAK-4 as the central TIR signaling mediator in innate immunity. TRENDS Immunol 2002;23:503–506.

    Article  PubMed  CAS  Google Scholar 

  37. Takaesu G, Kishida S, Hiyama A et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000;5(4):649–658.

    Article  PubMed  CAS  Google Scholar 

  38. Ninomiya-Tsuji J, Kishimoto K, Hiyama A et al. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999;398:252–256.

    Article  PubMed  CAS  Google Scholar 

  39. Deng L, Wang C, Spencer E et al. Activation of the IkB kinase complex by TRAF6 requires a dimeric ubiqutitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000;103:351–361.

    Article  PubMed  CAS  Google Scholar 

  40. Wang C, Deng L, Hong M et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Na ture 2001;412:346–351.

    Article  CAS  Google Scholar 

  41. Fischer K-D, Tedford K, Wirth T. New roles for Bcl 10 in B-cell development and LPS response. TRENDS Immunol 2004;25:113–116.

    Article  PubMed  CAS  Google Scholar 

  42. Sato S, Sugiyama M, Yamamoto M et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 2003;171(8):4304–4310.

    PubMed  CAS  Google Scholar 

  43. Meylan E, Burns K, Hofinann K et al. RIP1 is an essential mediator of Toll-like receptor 3-in-duced NF-kappa B activation. Nat Immunol 2004;5(5):503–507.

    Article  PubMed  CAS  Google Scholar 

  44. Waterfield M, Jin W, Reiley W et al. IkappaB is an essential component of the Tp12 signaling pathway. Mol Cell Biol 2004;24(13):6040–6048.

    Article  PubMed  CAS  Google Scholar 

  45. Dumitru CD, Ceci JD, Tsatsanis C et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000;103:1071–1083.

    Article  PubMed  CAS  Google Scholar 

  46. Waterfield MR, Zhang M, Norman LP et al. NF-kappaBl/p105 regulates lipopolysaccharide-stimu-lated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol Cell 2003;11:685–694.

    Article  PubMed  CAS  Google Scholar 

  47. Beinke S, Deka J, Lang V et al. NF-kappaBl p105 negatively regulates TPL-2 MEK kinase activ ity. Mol Cell Biol 2003;23(14):4739–4752.

    Article  PubMed  CAS  Google Scholar 

  48. Belich MP, Salmeron A, Johnston LH et al. TPL-2 kinase regulates the proteolysis of the NF-kappaB-inhibitory protein NF-kappaBl pl05. Nature 1999;397:363–368.

    Article  PubMed  CAS  Google Scholar 

  49. Lang V, Symons A, Watton SJ et al. ABIN-2 forms a ternary complex with TPL-2 and NF-kappa Bl pl05 and is essential for TPL-2 protein stability. Mol Cell Biol 2004;24(12):5235–5248.

    Article  PubMed  CAS  Google Scholar 

  50. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001;11(9):372–377.

    Article  PubMed  CAS  Google Scholar 

  51. Aggarwal BB. Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol 2003;3(9):745–756.

    Article  PubMed  CAS  Google Scholar 

  52. Chen G, Goeddel DV. TNF-R1 signaling: A beautiful pathway. Science. 2002;296(5573):1634–1635.

    Article  PubMed  CAS  Google Scholar 

  53. Legler DF, Micheau O, Doucey MA et al. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 2003;18:655–664.

    Article  PubMed  CAS  Google Scholar 

  54. Tada K, Okazaki T, Sakon S et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem 2001;276(39):36530–36534.

    Article  PubMed  CAS  Google Scholar 

  55. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signal ing complexes. Cell 2003;114(2):181–190.

    Article  PubMed  CAS  Google Scholar 

  56. Maeda S, Chang L, Li ZW et al. IKKbeta is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFalpha. Immunigy 2003;19:725–737.

    Article  CAS  Google Scholar 

  57. De Smaele E, Zazzeroni F, Papa S et al. Induction of gadd45P by NF-kB downregulates pro-apoptotic JNK signaling. Nature 2001;414:308–313.

    Article  PubMed  Google Scholar 

  58. Tang G, Minemoto Y, Dibling B et al. Inhibition of JNK activation through NF-kappaB target genes. Nature 2001;414(6861):313–317.

    Article  PubMed  CAS  Google Scholar 

  59. Papa S, Zazzeroni F, Bubici C et al. Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 2004;6:146–153.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang SQ, Kovalenko A, Cantarella G et al. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 2000;12(3):301–311.

    Article  PubMed  CAS  Google Scholar 

  61. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex re quire Cdc37 and Hsp90. Mol Cell 2002;9(2):401–410.

    Article  PubMed  CAS  Google Scholar 

  62. Senftleben U, Cao Y, Xiao G et al. Activation of IKKa of a second, evolutionary conserved, NF-KB signaling pathway. Science 2001;293:1495–1499.

    Article  PubMed  CAS  Google Scholar 

  63. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 pl00. Mol Cell 2001;7:401–409.

    Article  PubMed  CAS  Google Scholar 

  64. Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004.

    Google Scholar 

  65. Tang ED, Wang CY, Xiong Y et al. A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 2003;278:37297–37305.

    Article  PubMed  CAS  Google Scholar 

  66. Yang J, Lin Y, Guo Z et al. The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2001;2:620–624.

    Article  PubMed  CAS  Google Scholar 

  67. Takaesu G, Surabhi RM, Park KJ et al. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 2003;326(1):105–115.

    Article  PubMed  CAS  Google Scholar 

  68. Wang D, Westerheide SD, Hanson JL et al. Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 2000;275:32592–32597.

    Article  PubMed  CAS  Google Scholar 

  69. Sakurai H, Chiba H, Miyoshi H et al. IκB kinases phosphorylate NF-KB p 65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999; 274:30353–30356.

    Article  PubMed  CAS  Google Scholar 

  70. Duran A, Diaz-Meco MT, Moscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 2003;22(15):3910–3918.

    Article  PubMed  CAS  Google Scholar 

  71. Vermeulen L, De Wilde G, Van Damme P et al. Transcriptional activation of the NF-kappaB p65 subunit by mitogen-and stress-activated protein kinase-1 (MSK1). EMBO J 2003;22:1313–1324.

    Article  PubMed  CAS  Google Scholar 

  72. Okazaki T, Sakon S, Sasazuki T et al. Phosphorylation of serine 276 is essential for p65 NF-kappaB subunit-dependent cellular responses. Biochem Biophys Res Commun 2003;300(4):807–812.

    Article  PubMed  CAS  Google Scholar 

  73. Bishop GA, Hostager BS. The CD40-CD154 interaction in B cell-T cell liaisons. Cytokine Growth Factor Rev 2003;14:297–309.

    Article  PubMed  CAS  Google Scholar 

  74. Harnett MM. CD40: A growing cytoplasmic tale. Sci STKE. 2004;2004(237):25.

    Google Scholar 

  75. Kosaka Y, Calderhead DM, Manning EM et al. Activation and regulation of the IkappaB kinase in human B cells by CD40 signaling. Eur J Immunol 1999;29:1353–1362.

    Article  PubMed  CAS  Google Scholar 

  76. Coope HJ, Atkinson PG, Huhse B et al. CD40 regulates the processing of NF-kappaB2 p100 to P52. EMBO J 2002;15:5375–5385.

    Article  Google Scholar 

  77. Zarnegar B, He JQ, Oganesyan G et al. Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-kappaB activation pathways. Proc Natl Acad Sci USA 2004;101(21):8108–8113.

    Article  PubMed  CAS  Google Scholar 

  78. Qian Y, Zhao Z, Jiang Z et al. Role of NF kappa B activator Actl in CD40-mediated signaling in epithelial cells. Proc Natl Acad Sci USA 2002;99(14):9386–9391.

    Article  PubMed  CAS  Google Scholar 

  79. Kanamori M, Kai C, Hayashizaki Y et al. NF-kappaB activator Actl associates with IL-1/Toll pathway adaptor molecule TRAF6. FEBS Lett 2002;532:241–246.

    Article  PubMed  CAS  Google Scholar 

  80. Hostager BS, Haxhinasto SA, Rowland SL et al. Tumor necrosis factor receptor-associated factor 2 (TRAF2)-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382–45390.

    Article  PubMed  CAS  Google Scholar 

  81. Liao G, Zhang M, Harhaj EW et al. Regulation of the NF-kappaB-inducing kinase by tu mor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004;279(25):26243–26250.

    Article  PubMed  CAS  Google Scholar 

  82. Tumanov AV, Grivennikov SI, Shakhov AN et al. Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunol Rev 2003;195:106–116.

    Article  PubMed  CAS  Google Scholar 

  83. Saitoh T, Nakano H, Yamamoto N et al. Lymphotoxin-beta receptor mediates NEMO-independent NF-kappaB activation. FEBS Lett 2002;532(1–2):45–51.

    Article  PubMed  CAS  Google Scholar 

  84. Dejardin E, Droin NM, Delhase M et al. The Lymphotoxin-beta receptor induces different pat terns of gene expression via two NF-kappaB pathways. Immunity 2002;17:525–535.

    Article  PubMed  CAS  Google Scholar 

  85. Batten M, Groom J, Cachero TG et al. BAFF mediates survival of peripheral immature B lympho cytes. J Exp Med 2000;192(10):1453–1466.

    Article  PubMed  CAS  Google Scholar 

  86. Claudio E, Brown K, Park S et al. BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 2002;3:958–965.

    Article  PubMed  CAS  Google Scholar 

  87. Kayagaki N, Yan M, Seshasayee D et al. BAFF/BLyS receptor 3 binds the B Cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 2002;17:515–524.

    Article  PubMed  CAS  Google Scholar 

  88. Xu L-G, Shu H-B. TNFR-associated factor 3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-KB activation and IL-10 production. J Immunol 2002;169:6883–6889.

    PubMed  CAS  Google Scholar 

  89. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002;20:795–823.

    Article  PubMed  CAS  Google Scholar 

  90. Wong BR, Josien R, Choi Y. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol 1999;65(6):715–724.

    PubMed  CAS  Google Scholar 

  91. Novack DV, Yin L, Hagen-Stapleton A et al. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003;198(5):771–781.

    Article  PubMed  CAS  Google Scholar 

  92. Cao Y, Bonizzi G, Seagroves TN et al. IKKalpha provides an essential link between RANK signal ing and cydin Dl expression during mammary gland development. Cell 2001;107(6):763–775.

    Article  PubMed  CAS  Google Scholar 

  93. Kawamata S, Hori T, Imura A et al. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2-and TRAF5-mediated NF-kappaB acti vation. J Biol Chem 1998;273(10):5808–5814.

    Article  PubMed  CAS  Google Scholar 

  94. Yamamoto H, Kishimoto T, Minamoto S. NF-kappaB activation in CD27 signaling: Involvement of TNF receptor-associated factors in its signaling and identification of functional region of CD27. J Immunol 1998;161(9):4753–4759.

    PubMed  CAS  Google Scholar 

  95. Horie R, Watanabe T, Ito K et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin-Reed-Sternberg cells. Am J Pathol 2002;160:1647–1654.

    PubMed  CAS  Google Scholar 

  96. Jang IK, Lee ZH, Kim YJ et al. Human 4-1BB (CD 137) signals are mediated by TRAF2 and activate nuclear factor-kappa B. Biochem Biophys Res Commun 1998;242(3):613–620.

    Article  PubMed  CAS  Google Scholar 

  97. O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense. Science’ s stke 2000;44:1–11.

    Google Scholar 

  98. Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduc tion during inflammation and host defense. Sci STKE 2003;2003(171):re3.

    Article  PubMed  Google Scholar 

  99. Ye R. Regulation of nuclear factor κB by G-protein-coupled receptors. J Leukocyte Biol 2001; 70:839–848.

    PubMed  CAS  Google Scholar 

  100. Pribila JT, Quale AC, Mueller KL et al. Integrins and T cell-mediated immunity. Annu Rev Immunol 2004;22:157–180.

    Article  PubMed  CAS  Google Scholar 

  101. Reyes-Reyes M, Mora N, Zentella A et al. Phosphatidylinositol 3-kinase mediates integrin-dependent NF-kappaB and MAPK activation through separate signaling pathways. J Cell Sci 2001;114 (Pt 8):1579–1589.

    PubMed  CAS  Google Scholar 

  102. Jorissen RN, Walker F, Pouliot N et al. Epidermal growth factor receptor: Mechanisms of activa tion and signalling. Exp Cell Res 2003;284(1):31–53.

    Article  PubMed  CAS  Google Scholar 

  103. Anest V, Cogswell PC, Baldwin Jr AS. IKB Kinase a and p65/RelA contribute to optimal epider mal growth factor-induced c-fos Gene expression independent of IκBα degradation. J Biol Chem 2004;279(30):31183–31189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sun, SC., Harhaj, E.W. (2006). Receptors and Adaptors for NF-κB Signaling. In: Liou, HC. (eds) NF-κB/Rel Transcription Factor Family. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33573-0_3

Download citation

Publish with us

Policies and ethics