Skip to main content

Implantable Concanavlin a Based Sensors for Interstitial Fluid Glucose Sensing in Diabetics

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 11))

Abstract

Currently, 6.2% of the United States population has been diagnosed with diabetes1. Of the estimated 17 million diabetics, 90% of them are insulin resistant2. Diabetes is commonly split into two categories depending on the cause of the disease. Type 1 diabetes, traditionally termed juvenile, is marked by a failure of the B-cells in the endocrine portion of the pancreas to properly synthesize insulin resulting in improper control of blood glucose levels. Type 2 diabetes, traditionally classified as late onset, develops when organs and cells in the body become immune to native insulin resulting in dramatic oscillations in blood sugar24. Type 1 diabetics regulate their blood sugar by either consuming a glucose rich food, if blood sugar is low (< 70 mg/dL) or intravenously injecting insulin if blood sugar is too high (> 150 mg/dL)1. Type 2 diabetics, being resistant to insulin therapy, must regulate their blood sugar through dietary control and through the aid of commercially available drug treatments1. All diabetics are recommended to monitor their blood sugar often to avoid immediate threats attributed to high or low blood sugar such as dizziness, coma, or even death5. New research has shown that continuous monitoring of blood sugar with tight blood glucose control (as close to normal as possible, 70–150 mg/dL) can substantially reduce the risk of developing afflictions associated with prolonged misregulation of blood sugar5. These afflictions include kidney, liver, and heart disease, amputations due to poor circulation and blindness due to retinopathy5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Centers for Disease Control and Prevention, National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2000, Atlanta, GA: U.S. (Department of Health and Human Services, Centers for Disease Control and Prevention, 2002).

    Google Scholar 

  2. F. H. Martini, Fundamentals of Anatomy & Physiology (Prentice Hall, New Jersey, 1995).

    Google Scholar 

  3. L.C. Junqueira, J. Carneiro, and R.O. Kelly, Basic Histology: 9 th Edition (Appleton & Lange, Connecticut, 1998).

    Google Scholar 

  4. L.S. Costanzo, Physiology (W. B. Saunders Company, Pennsylvania, 1998).

    Google Scholar 

  5. Diabetes Research Group, The effects of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus, New England Journal of Medicine 329, 977–986 (1993).

    Article  Google Scholar 

  6. H.K. Naito, Y.S. Kwak, C. Cottingham, Accuracy of the One Touch II whole blood glucose analyzer when used by analysts with diverse technical backgrounds, J Fam Pract. 37(2) 153–157 (1993).

    Google Scholar 

  7. S. Skeie, G. Thue, K. Nerhus and S. Sandberg, Instruments for Self-Monitoring of Blood Glucose: Comparisons of Testing Quality Achieved by Patients and a Technician, Clinical Chemistry 48, 994–1003 (2002).

    Google Scholar 

  8. J. Pickup, L. McCartney, O. Rolinski, and D. Birch, In vivo glucose sensing for diabetes management: progress towards non-invasive monitoring, Biomedical Journal 13, 1–4 (1999).

    Google Scholar 

  9. G. L. Coté, Noninvasive and minimally invasive optical monitoring technologies, American Society of Nutritional Science, 1596–1604 (2001).

    Google Scholar 

  10. T. Koschinksy and L. Heinemann, Sensors for glucose monitoring: technical and clinical aspects, Diabetes Metab Res Review 17, 113–123 (2001).

    Article  Google Scholar 

  11. D. C. Klonoff, Noninvasive blood glucose monitoring, Diabetes Care, 20 (1997).

    Google Scholar 

  12. J. C. de Graff, G.J. Hemmes, T. Bruin, D.T. Ubbink, R. P. J. Michels, J. H. M. Jacobs, and G. T. B. Sanders, Influence of repetitive finger puncturing on skin perfusion and capillary blood analysis in patients with diabetes mellitus, Clinical Chemistry 45(12), 2200–2206, (1999).

    Google Scholar 

  13. T. J. Bohannon and N. J. Potts, Measurement of glucose in diabetic subjects using noninvasive transdermal extraction, National Medicine, 1(11), 1132–1133 (1995).

    Article  Google Scholar 

  14. G. Rao, R.H. Guy, P. Glikfeld, W.R. LaCourse, L. Leung, J. Tamada, M.O. Potts, and N. Azimi, Reverse Iontophoresis: Noninvasive glucose monitoring in vivo in humans, Pharmaceutical Research, 12(12), 1869–1873 (1995).

    Article  Google Scholar 

  15. P. Connolly, C. Cotton, and F. Morin, Opportunities at the skin interface for continous patient monitoring: A reverse iontophoresis model tested on lactate and glucose, IEEE transactions on nanobioscience 1(1), 37–41 (2002).

    Article  Google Scholar 

  16. T. Nunnold, S. R. Colberg, M.T. Herriott, and C.T. Somma, Use of the noninvasive GlucoWatch Biographer during exercise of varying intensity, Diabetes Technology & Therapeutics, 6(4), 454–462 (2004).

    Article  Google Scholar 

  17. S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, and S. L. Monfre, Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy, Clinical Chemistry, 45(9), 1651–1658 (1999).

    Google Scholar 

  18. J.J. Burmeister, and M.A. Arnold, Evalution of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy, Clinical Chemistry, 45(9), 1621–1627 (1999).

    Google Scholar 

  19. S. Yeh, C. F. Hanna, and O. S. Khalil, Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements, Clinical Chemistry, 49(6), 924–934 (2003).

    Article  Google Scholar 

  20. R. Vonach, J. Buschmann, et al., Application of Mid-infrared transmission spectroscopy to the direct determination of glucose in whole blood, Applied Spectroscopy, 52(6), 820–822 (1998).

    Article  ADS  Google Scholar 

  21. K. H. Hazen, M. A. Arnold, and G. W. Small, Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy, Analytica Chimica Acta 371, 255–267 (1998).

    Article  Google Scholar 

  22. G. W. Small, M. A. Arnold, and L. A. Marquardt, Strategies for coupling digital filtering with partial least-squares regression-application to the determination of glucose in plasma by Fourier-transform near-infrared spectroscopy, Analytical Chemistry 65, 3279, (1993).

    Article  Google Scholar 

  23. K.H. Hazen, M.A. Arnold, and G.W. Small, Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy, Analytica Chimica Acta 371, 225–267, (1998).

    Article  Google Scholar 

  24. K. H. Hazen, M. A. Arnold, and G. W. Small, Measurement of glucose in water with first-overtone near-infrared spectra, Applied Spectroscopy, 52, 1597, (1998).

    Article  ADS  Google Scholar 

  25. M. A. Arnold, Non-invasive glucose monitoring, Current Opinion in Biotechnology, 7, 46–49 (1996).

    Article  Google Scholar 

  26. B. D. Cameron and G.L. Coté, Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach, IEEE Transactions on Biomedical Engineering 44(12), 1221–1227 (1997).

    Article  Google Scholar 

  27. B. D. Cameron, J. S. Baba, and G. L. Coté, Optical polarimetry applied to the development of a noninvasive in vivo glucose monitor, SPIE-BiOS 2000 Conference Proceedings, V3923.

    Google Scholar 

  28. J. S. Baba, B. D. Cameron, S. Theru, and G. L. Coté, Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye, Journal of Biomedical Optics, 7(3), 321–328 (2002).

    Article  ADS  Google Scholar 

  29. R. R. Ansari, S. Bockle, and L. Rovati, New optical scheme for a polarimetric-based glucose sensor, Journal of Biomedical Optics, 9(1), 103–115 (2004).

    Article  ADS  Google Scholar 

  30. M. J. McShane, Potential for glucose monitoring with nanoengineered fluorescent biosensors, Diabetes Technology & Therapeutics 4(4), 533–538 (2002).

    Article  Google Scholar 

  31. N. DiCesare and J. R. Lakowicz, A new highly fluorescent probe for monosaccharides based on a donor-acceptor diphenyloxazole, Chemcomm Communication, 2022–2023 (2001).

    Google Scholar 

  32. J.C. Norrild and I. Sotofte, Design, synthesis and structure of new potential electrochemically active boronic acid-based sensors, Perkin Transactions 2, 303–311 (2002).

    Article  Google Scholar 

  33. Z. Murtaza, L. Tolosa, P. Harms, and J. R. Lakowicz, On the possibility of glucose sensing using boronic acid and a luminescent ruthenium metal-ligand complex, Journal of Fluorescence 12(2), 187–192 (2002).

    Article  Google Scholar 

  34. J. T. Suri, D. B. Cordes, F. E. Cappuccio, R. A. Wessling, and B. Singaram, Continous glucose sensing with a fluorescent thin-film hydrogel, Angewandte Chemie 42, 5857–5859 (2003).

    Article  Google Scholar 

  35. V. L. Alexeev, A. C. Sharma, A. V. Goponenko, S. Das, I. K. Lednev, C. S. Wilcox, D. N. Finegold, and S. A. Asher, High ionic strength glucose-sensing photonic crystal, Analytical Chemistry 75, 2316–2323, (2003).

    Article  Google Scholar 

  36. R. Badugu, J. R. Lakowicz, and C. D. Geddes, A glucose sensing contact lens: a non-invasive technique for continuous physiological glucose monitoring, Journal of Fluorescence 13(5), 371–374 (2003).

    Article  Google Scholar 

  37. R. Badugu, J. R. Lakowicz, and C. D. Geddes, Noninvasive continuous monitoring of physiological glucose using a monosaccharide-sensing contact lens, Analytical Chemistry 76, 610–618 (2004).

    Article  Google Scholar 

  38. M. D. Philips and T. D. James, Boronic acid based modular fluorescent sensors for glucose, Journal of Fluorescence 14(5), 549–559 (2004).

    Article  Google Scholar 

  39. H. Fang, G. Kaur, and B. Wang, Progress in boronic acid-based fluorescent glucose sensors, Journal of Fluorescence 14(5), 481–489, (2004).

    Article  Google Scholar 

  40. R. Badugu, J. R. Lakowicz, and C. D. Geddes, Opthalmic glucose sensing: a novel monosaccharide sensing disposable and colorless contact lens, Analyst 129, 516–521 (2004).

    Article  ADS  Google Scholar 

  41. J. R. Lakowicz and B. Maliwal, Optical sensing of glucose using phase-modulation fluorimetry, Analytica Chimica Acta 271, 155–164 (1993).

    Article  Google Scholar 

  42. D. L. Meadows and J. S. Schultz, Design, Manufacture and Characterization of an Optical-Fiber Glucose Affinity Sensor-Based on an Homogenous Fluorescence Energy-Transfer Assay System, Analytica Chimica Acta 280(1), 21–30 (1993).

    Article  Google Scholar 

  43. R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel, Analytical Chemistry 71, 3126–3132 (1999).

    Article  Google Scholar 

  44. L. Tolosa, H. Malak, G. Roab, and J. R. Lakowicz, Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5, Sensors and Actuators B-Chemical. 45(2), 93–99 (1997).

    Article  Google Scholar 

  45. L. Tolosa, H. Szmacinski, G. Roab, and J. R. Lakowicz, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Analytical Biochemistry 250, 102–108, (1997).

    Article  Google Scholar 

  46. O. J. Rolinski, D. J. S. Birch, L. J. McCartney, and J. C. Pickup, A time-resolved near-infrared fluorescent assay for glucose: opportunities for trans-dermal sensing, Journal of Photochemistry and Photobiology B: Biology 54, 26–34 (2000).

    Article  Google Scholar 

  47. E. Kulcu, J. A. Tamada, G. Reach, R. O. Potts, M. L. J. Lesho, Physiological Differences between interstitial glucose and blood glucose measure in human subjects, Diabetes Care 26(8), 2405–2409 (2003).

    Article  Google Scholar 

  48. B. Aussedat, M. Dupire-Angel, R. Gifford, J. C. Klein, G. S. Wilson, and G. Reach, Interstitial glucose concentration and glycemia: implications for continuous subcutaneous glucose monitoring, Am J Physiol Endocrinol Metab 278, 716–728 (2000).

    Google Scholar 

  49. H. Bittiger and H. P. Schnebli, Concanavalin A as a tool (John Wiles & Sons, New York, 1976).

    Google Scholar 

  50. T. K. Chowdhury, and A. K. Weiss, Advances in experimental medicine and biology: Concanavalin A, (Plenum Press, New York, 1974).

    Google Scholar 

  51. J. S. Schultz, S. Mansouri, and I. J. Goldstein, Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites, Diabetes Care 5(3), 245–253 (1982).

    Article  Google Scholar 

  52. D. L. Meadows and J. S. Schultz, Fiber-optic biosensors based on fluorescence energy transfer, Talanta 35(2), 145–150 (1988).

    Article  Google Scholar 

  53. D. L. Meadows, A fiber optic biosensor for glucose monitoring based on fluorescence energy transfer, (Ph.D. Dissertation, The University of Michigan, 1988).

    Google Scholar 

  54. C. Huet, M. Lonchampt, M. Huet, and A. Bernadac, Temperature effects on the concanavalin A molecule and on concanavalin A binding, Biochimica et Biophysica Acta. 365, 28–39 (1974).

    Google Scholar 

  55. A. Clark and M. Denborough, The interaction of Concanavalin A with blood-group-substance glycoprotiens from human secretions, Biochemistry 121, 811 (1971).

    Google Scholar 

  56. Chapter 2 — Thiol-Reactive Probes, Handbook of Fluorescent Probes and Research Products (8 th Edition) (Molecular Probes, Oregon, 2002). Also available online: http://www.probes.com/handbook/index.html.

    Google Scholar 

  57. Chapter 14 — Fluorescent Tracers of Cell Morphology and Fluid Flow, Handbook of Fluorescent Probes and Research Products (8 th Edition) (Molecular Probes, Oregon, 2002). Also available online: http://www.probes.com/handbook/index.html.

    Google Scholar 

  58. P. Atkins, Physical Chemistry: 5 th Edition (W.H. Freeman and Company, New York, 1994).

    Google Scholar 

  59. J. R. Lakowicz, Chapter 13: Energy Transfer, Principles of Fluorescence Spectroscopy, 2 nd Edition (Kluwer Academic / Plenum Publishers, New York, 1999).

    Google Scholar 

  60. D.L. Andrews and A. A. Demidov, Resonance Energy Transfer (John Wiley & Sons, New York, 1999).

    Google Scholar 

  61. P. Wu and L. Brand, Resonance energy transfer: methods and applications, Analytical Biochemistry 218, 1–13 (1994).

    Article  Google Scholar 

  62. Chapter 1 — Fluorophores and Their Amine-Reactive Derivatives, Handbook of Fluorescent Probes and Research Products (8 th Edition) (Oregon, Molecular Probes, 2002). Also available online: http://www.probes.com/handbook/index.html.

    Google Scholar 

  63. R. Ballerstadt and J. S. Schultz, Competitive-binding assay method based on fluorescence quenching of ligands held in close proximity by a multivalent receptor, Analytica Chimica Acta 345, 203–212 (1997).

    Article  Google Scholar 

  64. R. Ballerstadt, and J. S. Schultz, A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring, Analytical Chemistry 72(17), 4185–4192 (2000).

    Article  Google Scholar 

  65. R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, In vitro long-term performance study of a near infrared fluorescence affinity sensor for glucose monitoring, Biosensors and Bioelectronics 19, 905–914 (2004).

    Article  Google Scholar 

  66. R. Ballerstadt, A. Gowda, and R. McNichols, Fluorescence Resonance Energy Transfer-Based Near-Infrared Fluorescence Sensor for Glucose Monitoring, Diabetes Technology & Therapeutics 6(2), (2004).

    Google Scholar 

  67. S. Chowdhury and J. Hubbell, Adhesion prevention with ancrod released via a tissue-adherent hydrogel, Journal of Surgical Research 61, 58–64 (1996).

    Article  Google Scholar 

  68. J. Westand and J. Hubbell, Photopolymerized hydrogel materials for drug delivery applications, Reactive Polymers 25, 139–147 (1995).

    Article  Google Scholar 

  69. C. P. Pathak, A. S. Sawhney, and J. A. Hubbell, Rapid photopolymerization of immunoprotective gels in contact with cells and tissue, Journal of the American Chemistry Society 114, 8311–8312 (1992).

    Article  Google Scholar 

  70. G. M. Cruise, O. D. Hegre, F. V. Lamberti, S. R. Hager, R. Hill, D. S. Sharp, and J. A. Hubbell, In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membrane, Cell Transplantation 8, 293–306 (1999).

    Google Scholar 

  71. J. West and J. Hubbell, Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the roles of medial and luminal factors in arterial healing, Proceedings of the National Academy of Science USA. 93(23), 13188–13193 (1996).

    Article  ADS  Google Scholar 

  72. A. S. Sawhney, C. P. Pathak, J. J. van Rensburg, R. C. Dunn, and J. A. Hubbell, Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention, Journal of Biomedical Materials Research. 28, 831–838 (1994).

    Article  Google Scholar 

  73. J. Hill-West, S. M. Chowdhury, M. J. Slepian, J. A. Hubbell, Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers, Proceedings of the National Academy of Science USA. 91, 5967–5971 (1994).

    Article  ADS  Google Scholar 

  74. K. L. Prime, and G. M. Whitesides, Self-Assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Surfaces, Science 252, 1164–1167 (1991).

    Article  ADS  Google Scholar 

  75. P. Drumheller and J. Hubbell, Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell resistant surfaces, Journal of Biomedical Materials Research. 29, 207–215 (1995).

    Article  Google Scholar 

  76. A.P. Christopher, R.E. Connor, and A. Heller, Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors, Biomaterials 18, 1665–1670 (1997).

    Article  Google Scholar 

  77. M. B. Mellott, K. Searcy, and M. V. Pishko, Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization, Biomaterials. 22(9), 929–941 (2001).

    Article  Google Scholar 

  78. R. J. Russell, A. C. Axel, K. L. Shields, and M. V. Pishko, Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing, Polymer 42, 4893–4901 (2001).

    Article  Google Scholar 

  79. M. J. McShane, R.J. Russell, M.V. Pishko, and G.L. Coté, Glucose monitoring using implanted fluorescent microspheres, IEEE Engineering in Medicine and Biology Magazine 19(6), 36–45 (2000).

    Article  Google Scholar 

  80. M. J. McShane, S. Rastegar, M. V. Pishko, and G.L. Cote, Monte carlo modeling for implantable fluorescent analyte sensors, IEEE Transactions on Biomedical Engineering 47(5), 624–632 (2000).

    Article  Google Scholar 

  81. L. H. Wang, S. L. Jacques, and L.-Q. Zheng, MCML-Monte Carlo modeling of photon transport in multi-layered tissues, Computer Methods and Programs in Biomedicine 47, 131–146 (1995).

    Article  Google Scholar 

  82. M. J. McShane, D. P. O’Neal, R. J. Russell, M. V. Pishko, and G. L. Coté, Progress toward implantable fluorescence-based sensors for monitoring glucose levels in interstitial fluid, SPIE Proceedings 3923, 78–87 (2000).

    Article  ADS  Google Scholar 

  83. D. P. O’Neal, M. J. McShane, M. V. Pishko, and G. L. Coté, Implantable biosensors: analysis of fluorescent light propagation through skin, SPIE Proceedings. 4263, 20–24 (2001).

    Article  ADS  Google Scholar 

  84. B. L. Ibey, A. Meledeo, V. Gant, V. Yadavalli, and M. V. Pishko, In vivo monitoring of blood glocuse using poly(ethylene glycol) microspheres, SPIE proceddings 4965-01, (2003).

    Google Scholar 

  85. B. L. Ibey, V. Vadavalli, et al., Analysis of Longer Wavelength Alexa Fluor Dyes for Use in a Minimally Invasive Glucose Sensor, EMBS Conference, Mexico (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ibey, B.L., Pishko, M.V., Coté, G.L. (2006). Implantable Concanavlin a Based Sensors for Interstitial Fluid Glucose Sensing in Diabetics. In: Geddes, C.D., Lakowicz, J.R. (eds) Glucose Sensing. Topics in Fluorescence Spectroscopy, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-33015-1_4

Download citation

Publish with us

Policies and ethics