Advertisement

An Adaptation of Bicgstab for Nonlinear Biological Systems

  • E. Venturino
  • P. R. Graves-Morris
  • A. De Rossi
Conference paper
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 199)

Abstract

Here we propose a new adaptation of Van der Vorst’s BiCGStab to nonlinear systems, a method combining the iterative features of both sparse linear system solvers, such as BiCGStab, and of nonlinear systems, which in general are linearized by forming Jacobians, and whose resulting system usually involves the use of a linear solver. We consider the feasibility and efficiency of the proposed method in the context of a space-diffusive population model, the growth of which depends nonlinearly on the density itself.

keywords

BiCGStab iterative methods population models sparse nonlinear systems 

References

  1. [1]
    G. A. Baker, P. R. Graves Morris. Padé Approximants. Cambridge Univ. Press, Cambridge, 1997.Google Scholar
  2. [2]
    S. C. Eisenstat, H. F. Walker. Globally convergent inexact Newton methods. SIAM J. Optimization 4:393–422, 1994.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. R. Fokkema, G. L. J. Sleijpen, H. A. Van der Vorst. Accelerated inexact Newton schemes for large systems of nonlinear equations. SIAM J. Sci. Computing 19:657–674, 1998.CrossRefMATHGoogle Scholar
  4. [4]
    R. Glowinski, H. B. Keller, L. Reinhart. Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems. SIAM J. Sci. Stat. Comput. 4:793–832, 1985.MathSciNetCrossRefGoogle Scholar
  5. [5]
    W. B. Gragg. Matrix interpretations and applications of the continued fraction algorithm. Rocky Mountain J. Math. 4:213–225, 1974.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. R. Graves-Morris. VPAStab: stabilized vector-Padé approximation with application to linear systems. Numer. Algorithms 33:293–304, 2003.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    P. R. Graves-Morris. BiCGStab, VPAStab and an adaptation to mildly nonlinear systems. Submitted.Google Scholar
  8. [8]
    M. E. Gurtin, R. C. MacCamy. On the diffusion of biological populations. Math. Biosci. 33:35–49, 1977.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    M. E. Gurtin, R. C. MacCamy. Diffusion models for age-structured populations. Math. Biosci. 54:49–59, 1981.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. H. Gutknecht. Lanczos-type solvers for non-symmetric linear systems of equations. Acta Numerica. 6:271–397, 1997.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. T. Kelley. Iterative methods for linear and nonlinear equations. Frontiers in Applied Mathematics 16, SIAM, Philadelphia, PA, 1995.MATHGoogle Scholar
  12. [12]
    G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods, 2nd Ed., Clarendon Press, Oxford, 1979.Google Scholar
  13. [13]
    H. A. Van der Vorst. BiCGStab: A fast and smoothly convergent variant of BiCG for the solution of non-symmetric linear systems. SIAM J. Sci. Statist. Comput. 13:631–644, 1992.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • E. Venturino
    • 1
  • P. R. Graves-Morris
    • 2
  • A. De Rossi
    • 1
  1. 1.Dipartimento di MatematicaUniversità TorinoTorinoItaly
  2. 2.Department of ComputingUniversity of BradfordBradfordUK

Personalised recommendations