Parameter Estimation of Parabolic Type Factor Model and Empirical Study of US Treasury Bonds

  • S. I. Aihara
  • A. Bagchi
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 199)


In this paper we study the parameter estimation problem for stochastic distributed parameter systems by using the modified maximum likelihood method. More specifically, by using the US treasury bond data, the parameter estimation is performed for the stochastic hyperbolic and parabolic models describing the behavior of the term-structure of the US bond. From the prediction results, we can show that the parabolic factor models work better than the hyperbolic ones.

Key words

Factor model US bonds MLE Stochastic Parabolic Equation Maximum likelihood estimate 


  1. [1]
    J. James and N. Webber. Interest Rate Modeling. John Willey & Sons, Ltd, Chicheter New York, 2002.Google Scholar
  2. [2]
    P. Santa-Clara and D. Sornette. The dynamics of the forward rate curve with stochastic string shocks. Review of Financial Studies, 14:149–185, 2001.CrossRefGoogle Scholar
  3. [3]
    S. Aihara and A. Bagchi. Stochastic hyperbolic model for infinite-dimensional forward rates and option pricing. Mathematical Finance, 15:27–47, 2005.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J-P Bouchaud, N. Sagna, R. Cont, N. EL-Karoui, and M. Potters. Phenomenology of the interest rate curve. Applied Mathathematical Finance, 6:209–232, 1999.CrossRefGoogle Scholar
  5. [5]
    R. Cont. Modeling term structure dynamics: An infinite dimensional approach. Int. J. Theoretical and Applied Finace, 8:357–380, 2005.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge University Press, 1992.Google Scholar
  7. [7]
    E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes. Stochastics, 3:127–167, 1979.MATHMathSciNetGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • S. I. Aihara
    • 1
  • A. Bagchi
    • 2
  1. 1.Tokyo University of ScienceChino, NaganoJapan
  2. 2.FELab and Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations