Advertisement

The Legacy of Camillo Possio to Unsteady Aerodynamics

Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 199)

Abstract

First a brief overview is given of Camillo Possio’s short but outstanding and fruitful career. This is followed by an outline of the state of the art in flutter and unsteady aerodynamic research, and the challenges and problems like high-speed flight that arose in aircraft development at that time. Possio’s first publications on gas dynamic and supersonic problems are reviewed. The main focus is on the 1938 report on unsteady subsonic compressible 2D flow that became famous and was named after him, because he was the first person to developed an unsteady compressible aerodynamic theory, which was urgently needed in those years. The theory, which is based on Prandtl’s acceleration potential is briefly outlined. Some discussions and comments that took place in Germany and other countries at that time highlight the importance of this work for the scientific community. Early solutions of Possio’s integral equation developed by himself and later ones developed by other researchers are presented, as well as approaches that extended the theory to 3 dimensional flows before the war, like Kuessner’s theory, which was probably influenced by Possio. Finally Camillo Possio’s later scientific contributions to wind tunnel interference and to hydrodynamics are described. A summary of some developments of the 2nd half of the 20th century demonstrate that Camillo Possio created a milestone for modern aircraft research during his very short career.

keywords

Aeroelasticity Unsteady Aerodynamics Flutter Integral Equation Possio 

References

  1. [1]
    C. Possio. Sul moto razionale dei gas. Atti Accad. Naz. Lincei, Rend. VI. S. 25, 455–461, 1937Google Scholar
  2. [2]
    C. Possio. L’azione aerodinamica sul profile oscillante alle velocita ultrasonore. Pontificia Accademia Scientiarium Acta 1, 93–106, 1937MATHGoogle Scholar
  3. [3]
    C. Possio. L’azione aerodinamica sul profilo oscillante in un fluido compressibile a velocita iposonora. L’Aerotecnica 18, 441–459, 1938Google Scholar
  4. [4]
    C. Possio. L’azione aerodinamica su una superficie portante in moto oscillatorio. Atti Accad. Naz. Lincei, Rend. VI.28, 194–200, 1938Google Scholar
  5. [5]
    C. Possio. Determinazione dell’azione aerodinamica corrispondente alle piccolo oscillazioni del velivolo. L’Aerotecnica 18, 1323–1351, 1938Google Scholar
  6. [6]
    C. Possio. Sul moto non stazionario di una superficie portante. Atti A ccad. Sci. Torino 74, 285–299, 1939MATHMathSciNetGoogle Scholar
  7. [7]
    C. Possio. Sol moto non stazionario di un fluido compressibile Atti Accad. naz. Lincei Rend. VI,29, 481–487, 1939Google Scholar
  8. [8]
    C. Possio. L’azione aerodinamica su di una superficie portante in moto vario Atti Accad. Sci. Torino 74, 537–557, 1939MATHMathSciNetGoogle Scholar
  9. [9]
    C. Possio. Sulla determinazione dei coefficienti aerodinamici che interessano la stabilita del velivolo Comm. Pontif. Acad. Sci.. 3, 141–169, 1939MATHGoogle Scholar
  10. [10]
    C. Possio. Sullo sparo di fianco da bordo di un aereo. Atti Accad. Sci. Torino 74, 1939Google Scholar
  11. [11]
    C. Possio. Sul problema del moto discontinuo di un ala. Nota 1. L’ Aerotecnica 20, 655–681, 1940MATHGoogle Scholar
  12. [12]
    C. Possio. Sul problema del moto discontinuo di un ala. Nota 2. L’ Aerotecnica 21, 205–230, 1941MATHGoogle Scholar
  13. [13]
    C. Possio. Sulla teoria del moto stazionario di un fluido pesante con superficie libera. Ann. Mat. pura appl. IV,20, 313–329, 1941MATHMathSciNetGoogle Scholar
  14. [14]
    C. Possio. Campo di velocita creato da un vortice in un fluido pesante a superficie libera in moto uniforme. Atti Accad. Sci. Torino 76, 365–388, 1941MATHMathSciNetGoogle Scholar
  15. [15]
    C. Possio. L’interferenza della galleria aerodinamica nel caso di moto non stazionario. L’Aerotecnica 1940-XVIII. 1940Google Scholar
  16. [16]
    C. Possio. The influence of the viscosity and thermal conductibility on sound propagation. Atti Accad. Scienze Torino 78. 274–292. 1943MATHMathSciNetGoogle Scholar
  17. [17]
    W. Birnbaum. Das ebene Problem des schlagenden Flügels. ZAMM 4. 277–292. 1924MATHGoogle Scholar
  18. [18]
    H.G. Kuessner. Allgemeine Tragflächentheorie. LuFo 17. 370–378. 1940MATHGoogle Scholar
  19. [19]
    E. Albano, W. Rodden. A doublet lattice method for calculating lift distributions on oscillating surfaces in subsonic flow. AIAA Journal 1969–7. 279–285. 1969Google Scholar
  20. [20]
    S. Lu, R. Voss. TDLM-a Transonic Doublet Lattice Method for 3D potential unsteady transonic flow calculation and its application to transonic flutter prediction. Proc. IFASD 1993 77–95. A AAF 1993Google Scholar
  21. [21]
    V. Carstens. Berechnung der instationaeren Druckverteilung an harmonisch schwingenden Gittern in ebener Unterschallstroemung. DFVLR-IB 73-J06 and 75-J02. 1973 and 1975Google Scholar
  22. [22]
    J.A. Fromme, M.A. Golberg. Aerodynamic interference effects on oscillating airfoils with controls in ventilated windtunnels. AIAA Journal 18. 417–426. 1980MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    I.E. Garrick, W.H. Reed III. Historical development of flutter. Journal of Aircraft 18. 897–912. 1981CrossRefGoogle Scholar

Copyright information

© International Federation for Information Processing 2006

Authors and Affiliations

  • R. Voss
    • 1
  1. 1.DLR Institute of AeroelasticityGoettingen

Personalised recommendations