Skip to main content

Mesoderm Formation in the Drosophila Embryo

  • Chapter
Muscle Development in Drosophila

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 953 Accesses

Abstract

All muscle cells develop from the mesoderm, which is the middle germ layer in the early embryo. The mesoderm itself derives from the ventral cells of the blastoderm stage embryo. Therefore, the regulatory events controlling dorsal-ventral development in the oocyte and the early embryo are the earliest events in muscle formation. The first stage in dorsal-ventral development can be traced back to the oocyte, where Gurken-Torpedo signaling establishes dorsal-ventral asymmetry. The ventral half of the oocyte is then allowed to express Pipe, which serves to activate a series of serine proteases. These activation events ultimately lead to the stimulation of the Toll receptor in the ventral side of the early embryo. In the final stage of this Toll maternal cascade there is the formation of the Dorsal protein gradient in the ventral nuclei of the embryo blastoderm. The Dorsal gradient both activates and represses zygotic gene expression to establish mesodermal cell fate and promote mesoderm invagination. The invaginated mesoderm then differentiates into appropriate muscle tissue types according to further positional information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. In: Bate M, Martinez Arias A, eds. The Development of Drosophila melanogaster. New York: Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  2. Stathopoulos A, Levine M. Dorsal gradient networks in the Drosophila embryo. Dev Biol 2002;246:57–67.

    Article  PubMed  CAS  Google Scholar 

  3. Van Buskirk C, Schupbach T. Versatility in signaling: Multiple responses to EGF receptor activation during Drosophila oogenesis. Trends Cell Biol 1999; 9:1–4.

    Article  PubMed  Google Scholar 

  4. Anderson KV. Pinning down positional information: Dorsal-ventral polarity in the Drosophila embryo. Cell 1998; 95:439–442.

    Article  PubMed  CAS  Google Scholar 

  5. Ip YT, Gridley T. Cell movements during gastrulation: Snail dependent and independent pathways. Curr Opin Genet Dev 2002; 12:423–429.

    Article  PubMed  CAS  Google Scholar 

  6. Leptin M. Gastrulation in Drosophila: The logic and the cellular mechanisms. EMBO J 1999; 18:3187–92.

    Article  PubMed  CAS  Google Scholar 

  7. Roth S. The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc 2003; 358:1317–1329.

    Article  CAS  Google Scholar 

  8. Schupbach T. Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 1987; 49:699–707.

    Article  PubMed  CAS  Google Scholar 

  9. Neuman-Silberberg FS, Schupbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 1993; 75:165–74.

    Article  PubMed  CAS  Google Scholar 

  10. Spradling AC. Germline cysts: Communes that work. Cell 1993; 72:649–51.

    Article  PubMed  CAS  Google Scholar 

  11. Roth S, Neuman-Silberberg FS, Barcelo G et al. Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 1995; 81:967–78.

    Article  PubMed  CAS  Google Scholar 

  12. Nilson LA, Schupbach T. EGF receptor signaling in Drosophila oogenesis. Curr Top Dev Biol 1999; 44:203–43.

    PubMed  CAS  Google Scholar 

  13. Brand AH, Perrimon N. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Dev 1994; 8:629–39.

    PubMed  CAS  Google Scholar 

  14. Hsu JC, Perrimon N. A temperaturesensitive MEK mutation demonstrates the conservation of the signaling pathways activated by receptor tyrosine kinases. Genes Dev 1994; 8:2176–87.

    PubMed  CAS  Google Scholar 

  15. Wasserman JD, Freeman M. An autoregulatory cascade of EGF receptor signaling patterns the Drosophila egg. Cell 1998; 95:355–64.

    Article  PubMed  CAS  Google Scholar 

  16. Bier E, Jan LY, Jan YN. Rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev 1990; 4:190–203.

    PubMed  CAS  Google Scholar 

  17. Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001; 107:173–82.

    Article  PubMed  CAS  Google Scholar 

  18. Ruohola-Baker H, Grell E, Chou TB et al. Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell 1993; 73:953–65.

    Article  PubMed  CAS  Google Scholar 

  19. Peri F, Technau M, Roth S. Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 2002; 129:2965–75.

    PubMed  CAS  Google Scholar 

  20. James KE, Dorman JB, Berg CA. Mosaic analyses reveal the function of Drosophila Ras in embryonic dorsoventral patterning and dorsal follicle cell morphogenesis. Development 2002; 129:2209–22.

    PubMed  CAS  Google Scholar 

  21. Wasserman SA. Toll signaling: The enigma variations. Curr Opin Genet Dev 2000; 10:497–502.

    Article  PubMed  CAS  Google Scholar 

  22. Morisato D, Anderson KV. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 1995; 29:371–99.

    Article  PubMed  CAS  Google Scholar 

  23. LeMosy EK, Hong CC, Hashimoto C. Signal transduction by a protease cascade. Trends Cell Biol 1999; 9:102–7.

    Article  PubMed  CAS  Google Scholar 

  24. Amiri A, Stein D. Dorsoventral patterning: A direct route from ovary to embryo. Curr Biol 2002; 12:R532–4.

    Article  PubMed  CAS  Google Scholar 

  25. Sen J, Goltz JS, Stevens L et al. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 1998; 95:471–81.

    Article  PubMed  CAS  Google Scholar 

  26. Sen J, Goltz JS, Konsolaki M et al. Windbeutel is required for function and correct subcellular localization of the Drosophila patterning protein Pipe. Development 2000; 127:5541–50.

    PubMed  CAS  Google Scholar 

  27. Konsolaki M, Schupbach T. Windbeutel, a gene required for dorsoventral patterning in Drosophila, encodes a protein that has homologies to vertebrate proteins of the endoplasmic reticulum. Genes Dev 1998; 12:120–131.

    PubMed  CAS  Google Scholar 

  28. Hong CC, Hashimoto C. An unusual mosaic protein with a protease domain, encoded by the nudel gene, is involved in defining embryonic dorsoventral polarity in Drosophila. Cell 1995; 82:785–94.

    Article  PubMed  CAS  Google Scholar 

  29. Konrad KD, Goralski TJ, Mahowald AP et al. The gastrulation defective gene of Drosophila melanogaster is a member of the serine protease superfamily. Proc Natl Acad Sci USA 1998; 95:6819–24.

    Article  PubMed  CAS  Google Scholar 

  30. Dissing M, Giordano H, DeLotto R. Autoproteolysis and feedback in a protease cascade directing Drosophila dorsal-ventral cell fate. EMBO J 2001; 20:2387–93.

    Article  PubMed  CAS  Google Scholar 

  31. LeMosy EK, Tan YQ, Hashimoto C. Activation of a protease cascade involved in patterning the Drosophila embryo. Proc Natl Acad Sci USA 2001; 98:5055–60.

    Article  PubMed  CAS  Google Scholar 

  32. Chasan R, Jin Y, Anderson KV. Activation of the easter zymogen is regulated by five other genes to define dorsal-ventral polarity in the Drosophila embryo. Development 1992; 115:607–16.

    PubMed  CAS  Google Scholar 

  33. Smith CL, DeLotto R. Ventralizing signal determined by protease activation in Drosophila embryogenesis. Nature 1994; 368:548–51.

    Article  PubMed  CAS  Google Scholar 

  34. Misra S, Hecht P, Maeda R et al. Positive and negative regulation of Easter, a member of the serine protease family that controls dorsal-ventral patterning in the Drosophila embryo. Development 1998; 125:1261–7.

    PubMed  CAS  Google Scholar 

  35. Hashimoto C, Kim DR, Weiss LA et al. Spatial regulation of developmental signaling by a serpin. Dev Cell 2003; 5:945–50.

    Article  PubMed  CAS  Google Scholar 

  36. Ligoxygakis P, Roth S, Reichhart JM. A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr Biol 2003; 13:2097–102.

    Article  PubMed  CAS  Google Scholar 

  37. Morisato D, Anderson KV. The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 1994; 76:677–88.

    Article  PubMed  CAS  Google Scholar 

  38. Schneider DS, Jin Y, Morisato D et al. A processed form of the Spatzle protein defines dorsal-ventral polarity in the Drosophila embryo. Development 1994; 120:1243–50.

    PubMed  CAS  Google Scholar 

  39. DeLotto Y, DeLotto R. Proteolytic processing of the Drosophila Spatzle protein by Easter generates a dimeric NGF-like molecule with ventralising activity. Mech Dev 1998; 72:141–148.

    Article  PubMed  CAS  Google Scholar 

  40. Weber AN, Tauszig-Delamasure S, Hoffmann JA et al. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol 2003; 4:794–800.

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988; 52:269–79.

    Article  PubMed  CAS  Google Scholar 

  42. Hashimoto C, Gerttula S, Anderson KV. Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: Importance of transmembrane signaling for dorsal-ventral pattern formation. Development 1991; 111:1021–8.

    PubMed  CAS  Google Scholar 

  43. Wakabayashi-Ito N, Belvin MP, Bluestein DA et al. Fusilli, an essential gene with a maternal role in Drosophila embryonic dorsal-ventral patterning. Dev Biol 2001; 229:44–54.

    Article  PubMed  CAS  Google Scholar 

  44. Letsou A, Alexander S, Orth K et al. Genetic and molecular characterization of tube, a Drosophila gene maternally required for embryonic dorsoventral polarity. Proc Natl Acad Sci USA 1991;88:810–4.

    Article  PubMed  CAS  Google Scholar 

  45. Feinstein E, Kimchi A, Wallach D et al. The death domain: A module shared by proteins with diverse cellular functions. Trends Biochem Sci 1995; 20:342–4.

    Article  PubMed  CAS  Google Scholar 

  46. Charatsi I, Luschnig S, Bartoszewski S et al. Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mech Dev 2003; 120:219–26.

    Article  PubMed  CAS  Google Scholar 

  47. Sun H, Towb P, Chiem DN et al. Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 2004; 23:100–110.

    Article  PubMed  CAS  Google Scholar 

  48. Shelton CA, Wasserman SA. Pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 1993; 72:515–25.

    Article  PubMed  CAS  Google Scholar 

  49. Grosshans J, Schnorrer F, Nusslein-Volhard C. Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech Dev 1999; 81:127–38.

    Article  PubMed  CAS  Google Scholar 

  50. Shen B, Manley JL. Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila. Development 2002; 129:1925–33.

    PubMed  CAS  Google Scholar 

  51. Geisler R, Bergmann A, Hiromi Y et al. Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IkB gene family of vertebrates. Cell 1992; 71:613–621.

    Article  PubMed  CAS  Google Scholar 

  52. Kidd S. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 1992; 71:623–635.

    Article  PubMed  CAS  Google Scholar 

  53. Belvin MP, Jin Y, Anderson KV. Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev 1995; 9:783–93.

    PubMed  CAS  Google Scholar 

  54. Bergmann A, Stein D, Geisler R et al. A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech Dev 1996; 60:109–23.

    Article  PubMed  CAS  Google Scholar 

  55. Cao Z, Henzel WJ, Gao X. IRAK: A kinase associated with the interleukin-1 receptor. Science 1996; 271:1128–1131.

    Article  PubMed  CAS  Google Scholar 

  56. Belvin MP, Anderson KV. A conserved signaling pathway: The Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 1996; 12:393–416.

    Article  PubMed  CAS  Google Scholar 

  57. Hoffmann JA. The immune response of Drosophila. Nature 2003; 426:33–38.

    Article  PubMed  CAS  Google Scholar 

  58. Roth S, Stein D, Nusslein-Volhard C. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 1989; 59:1189–202.

    Article  PubMed  CAS  Google Scholar 

  59. Rushlow CA, Han K, Manley JL et al. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 1989; 59:1165–77.

    Article  PubMed  CAS  Google Scholar 

  60. Steward R. Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 1989; 59:1179–88.

    Article  PubMed  CAS  Google Scholar 

  61. Jiang J, Kosman D, Ip YT et al. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev 1991; 5:1881–91.

    PubMed  CAS  Google Scholar 

  62. Ip YT, Park RE, Kosman D et al. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev 1992; 6:1728–39.

    PubMed  CAS  Google Scholar 

  63. Simpson P. Maternal-zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 1983; 105:615–632.

    PubMed  Google Scholar 

  64. Grau Y, Carteret G, Simpson P. Mutation and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster. Genetics 1984; 108:347–360.

    PubMed  Google Scholar 

  65. Leptin M, Grunewald B. Cell shape changes during gastrulation in Drosophila. Development 1990; 110:73–84.

    PubMed  CAS  Google Scholar 

  66. Thisse B, el Messal M, Perrin-Schmitt F. The twist gene: Isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res 1987; 15:3439–53.

    Article  PubMed  CAS  Google Scholar 

  67. Leptin M. Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 1991; 5:1568–76.

    PubMed  CAS  Google Scholar 

  68. Abmayr SM, Keller CA. Drosophila myogenesis and insights into the role of nautilus. Curr Top Dev Biol 1998; 38:35–80.

    Article  PubMed  CAS  Google Scholar 

  69. Shirokawa JM, Courey AJ. A direct contact between the dorsal rel homology domain and Twist may mediate transcriptional synergy. Mol Cell Biol 1997; 17:3345–55.

    PubMed  CAS  Google Scholar 

  70. Kosman D, Ip YT, Levine M et al. Establishment of the mesoderm-neuroectoderm boundary in the Drosophila embryo. Science 1991; 254:118–22.

    Article  PubMed  CAS  Google Scholar 

  71. Alberga A, Boulay JL, Kempe E et al. The snail gene required for mesoderm formation in Drosophila is expressed dynamically in derivatives of all three germ layers. Development 1991; 111:983–92.

    PubMed  CAS  Google Scholar 

  72. Ip YT, Maggert K, Levine M. Uncoupling gastrulation and mesoderm differentiation in the Drosophila embryo. EMBO J 1994; 13:5826–34.

    PubMed  CAS  Google Scholar 

  73. Kasai Y, Nambu JR, Lieberman PM et al. Dorsal-ventral patterning in Drosophila: DNA binding of Snail protein to the single-minded gene. Proc Natl Acad Sci USA 1992; 89:3414–3418.

    Article  PubMed  CAS  Google Scholar 

  74. Hemavathy K, Meng X, Ip YT. Differential regulation of gastrulation and neuroectodermal gene expression by Snail in the Drosophila embryo. Development 1997; 124:3683–91.

    PubMed  CAS  Google Scholar 

  75. Sweeton D, Parks S, Costa M et al. Gastrulation in Drosophila: The formation of the ventral furrow and posterior midgut invaginations. Development 1991; 112:775–89.

    PubMed  CAS  Google Scholar 

  76. Parks S, Wieschaus E. The Drosophila gastrulation gene concertina encodes a G alpha-like protein. Cell 1991; 64:447–58.

    Article  PubMed  CAS  Google Scholar 

  77. Costa M, Wilson ET, Wieschaus E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 1994; 76:1075–89.

    Article  PubMed  CAS  Google Scholar 

  78. Mata J, Curado S, Ephrussi A et al. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 2000; 101:511–522.

    Article  PubMed  CAS  Google Scholar 

  79. Seher TC, Leptin M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 2000; 10:623–629.

    Article  PubMed  CAS  Google Scholar 

  80. Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 2000; 101:523–531.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tony Ip .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Wakabayashi-Ito, N., Ip, Y.T. (2006). Mesoderm Formation in the Drosophila Embryo. In: Muscle Development in Drosophila. Molecular Biology Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/0-387-32963-3_3

Download citation

Publish with us

Policies and ethics