Skip to main content

Radiation Treatment Planning: Mixed Integer Programming Formulations and Approaches

  • Chapter
Handbook on Modelling for Discrete Optimization

Abstract

Radiation therapy is extensively used to treat a wide range of cancers. Due to the increasing complexities of delivery mechanisms, and the improved imaging devices that allow more accurate determination of cancer location, determination of high quality treatment plans via trial-and-error methods is impractical and computer optimization approaches to planning are becoming more critical and more difficult.

We outline three examples of the types of treatment planning problem that can arise in practice and strive to understand the commonalities and differences in these problems. We highlight optimization approaches to the problems, and particularly consider approaches based on mixed integer programming. Details of the mathematical formulations and algorithmic approaches are developed and pointers are given to supporting literature that shows the efficacy of the approaches in practical situations.

This material is based on research partially supported by the National Science Foundation Grants ACI-0113051, DMI-0100220, and CCR-9972372 and the Air Force Office of Scientific Research Grant F49620-01-1-0040.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Arcangeli, M. Benassi, L. Nieddu, C. Passi, G. Patrizi, and M.T. Russo. Optimal adaptive control of treatment planning in radiation therapy. European Journal of Operational Research, 140:399–412, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  2. BBIN. Biomedical Business International Newsletter, pages 72–75, 1996.

    Google Scholar 

  3. N. Boland, H.W. Hamacher, and F. Lenzen. Minimizing beam-on time in cancer radiation treatment using multileaf collimators. Networks, forthcoming, 2004.

    Google Scholar 

  4. T. R. Bortfeld, D. L. Kahler, T. J. Waldron, and A. L. Boyer. X-ray field compensation with multileaf collimators. International Journal of Radiation Oncology, Biology and Physics, 28(3):723–730, 1994.

    Article  CAS  Google Scholar 

  5. A. Brahme. Biological and physical dose optimization in radiation therapy. In J.G. Fortner and J.E. Rhoads, editors, Accomplishments in Cancer Research, pages 265–298. General Motors Cancer Research Foundation, 1991.

    Google Scholar 

  6. A. Brahme. Optimization of radiation therapy and the development of multileaf collimation. International Journal of Radiation Oncology, Biology and Physics, 25:373–375, 1993.

    Article  CAS  Google Scholar 

  7. A. Brahme. Treatment optimization: Using physical and radiobiological objective functions. In A. R. Smith, editor, Radiation Therapy Physics, pages 209–246. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  8. L. Brewster, R. Mohan, G. Mageras, C. Burman, S. Leibel, and Z. Fuks. Three dimensional conformal treatment planning with multileaf collimators. International Journal of Radiation Oncology, Biology and Physics, 33(5): 1081–1089, 1995.

    Article  CAS  Google Scholar 

  9. A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific Press, South San Francisco, California, 1988.

    Google Scholar 

  10. Y. Censor. Parallel application of block-iterative methods in medical imaging and radiation therapy. Mathematical Programming, 42:307–325, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. S. Cho, H. G. Kuterdem, and R. J. Marks. A spherical dose model for radiosurgery treatment planning. Physics in Medicine and Biology, 43:3145–3148, 1998.

    Article  PubMed  CAS  ADS  Google Scholar 

  12. A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems. Mathematical Programming, 31:153–191, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. D. D’Souza and R. R. Meyer. An intraoperative reoptimization framework for prostate implant treatment plans. Technical report, Computer Sciences Department, University of Wisconsin-Madison, in preparation 2003.

    Google Scholar 

  14. W. D. D’Souza, R. R. Meyer, M. C. Ferris, and B. R. Thomadsen. Mixed integer programming models for prostate brachytherapy treatment optimization. Medical Physics, 26(6): 1099, 1999.

    Google Scholar 

  15. W. D. D’Souza, R. R. Meyer, B. R. Thomadsen, and M. C. Ferris. An iterative sequential mixed-integer approach to automated prostate brachytherapy treatment optimization. Physics in Medicine and Biology, 46:297–322, 2001.

    Article  PubMed  CAS  ADS  Google Scholar 

  16. M. C. Ferris, J.-H. Lim, and D. M. Shepard. Optimization approaches for treatment planning on a Gamma Knife. SIAM Journal on Optimization, 13:921–937, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. C. Ferris, J.-H. Lim, and D. M. Shepard. Radiosurgery treatment planning via nonlinear programming. Annals of Operations Research, 119:247–260,2003.

    Article  MATH  Google Scholar 

  18. M. C. Ferris and D. M. Shepard. Optimization of Gamma Knife radio-surgery. In D.-Z. Du, P. Pardalos, and J. Wang, editors, Discrete Mathematical Problems with Medical Applications, volume 55 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 27–44. American Mathematical Society, 2000.

    Google Scholar 

  19. M. C. Ferris and M. M. Voelker. Neuro-dynamic programming for radiation treatment planning. Numerical Analysis Group Research Report NA-02/06, Oxford University Computing Laboratory, Oxford University, 2002.

    Google Scholar 

  20. J. C. Ganz. Gamma Knife Surgery. Springer-Verlag Wien, Austria, 1997.

    Google Scholar 

  21. H. W. Hamacher and K.-H. Küfer. Inverse radiation therapy planning — a multiple objective optimization approach. Discrete Applied Mathematics, 118:145–161,2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. ILOG CPLEX Division, 889 Alder Avenue, Incline Village, Nevada. CPLEX Optimizer. http://www.cplex.com/.

    Google Scholar 

  23. L.C. Jones and P.W. Hoban. Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Physics in Medicine and Biology, pages 159–170, 2000.

    Google Scholar 

  24. H. M. Kooy, L. A. Nedzi, J. S. Loeffler, E. Alexander, C. Cheng, E. Man-narino, E. Holupka, and R. Siddon. Treatment planning for streotactic radiosurgery of intra-cranial lesions. International Journal of Radiation Oncology, Biology and Physics, 21:683–693, 1991.

    Article  CAS  Google Scholar 

  25. L. Shi L. and S. Olafsson. Nested partitions method for global optimization. Operations Research, 48:390–407, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Langer, S. Morrill, R. Brown, O. Lee, and R. Lane. A comparison of mixed integer programming and fast simulated annealing for optimized beam weights in radiation therapy. Medical Physics, 23:957–964, 1996.

    Article  PubMed  CAS  ADS  Google Scholar 

  27. M. Langer, V. Thai, and L. Papiez. Improved leaf sequencing reduces segments or monitor units needed to deliver IMRT using multileaf colli-mators. Medical Physics, 28(12):2450–2458, 2001.

    Article  PubMed  CAS  ADS  Google Scholar 

  28. E. K. Lee, T. Fox, and I. Crocker. Optimization of radiosurgery treatment planning via mixed integer programming. Medical Physics, 27:995–1004, 2000.

    Article  PubMed  CAS  ADS  Google Scholar 

  29. E. K. Lee, R. J. Gallagher, D. Silvern, C. S. Wuu, and M. Zaider. Treatment planning for brachytherapy: an integer programming model, two computational approaches and experiments with permanent prostate implant planning. Physics in Medicine and Biology, 44:145–165, 1999.

    Article  PubMed  CAS  ADS  Google Scholar 

  30. L. Luo, H. Shu, W. Yu, Y. Yan, X. Bao, and Y. Fu. Optimizing computerized treatment planning for the Gamma Knife by source culling. International Journal of Radiation Oncology, Biology and Physics, 45(5): 1339–1346, 1999.

    Article  CAS  Google Scholar 

  31. R. R. Meyer, W. D. D’Souza, M. C. Ferris, and B. R. Thomadsen. MIP models and BB strategies in brachytherapy treatment optimization. Journal of Global Optimization, 25:23–42, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. M. Morrill, K. S. Lam, R. G. Lane, M. Langer, and I.I. Rosen. Very fast simulated annealing in radiation therapy treatment plan optimization. International Journal of Radiation Oncology, Biology and Physics, 31:179–188, 1995.

    Article  CAS  Google Scholar 

  33. A. Niemierko. Radiobiological models of tissue response to radiation in treatment planning systems. Tumori, 84:140–143, 1998.

    PubMed  CAS  Google Scholar 

  34. F. Preciado-Walters, R. Rardin, M. Langer, and V. Thai. A coupled column generation, mixed-integer approach to optimal planning of intensity modulated radiation therapy for cancer. Technical report, Industrial Engineering, Purdue University, 2002.

    Google Scholar 

  35. W. Que. Comparison of algorithms for multileaf collimator field segmentation. Medical Physics, 26:2390–2396, 1999.

    Article  PubMed  CAS  ADS  Google Scholar 

  36. W. Schlegel and A. Mahr, editors. 3D Conformal Radiation Therapy-A Multimedia Introduction to Methods and Techniques. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  37. D. M. Shepard, L. S. Chin, S. J. DiBiase, S. A. Naqvi, J. Lim, and M. C. Ferris. Clinical implementation of an automated planning system for Gamma Knife radiosurgery. International Journal of Radiation Oncology, Biology, Physics, 56:1488–1494, 2003.

    Article  PubMed  Google Scholar 

  38. D. M. Shepard, M. C. Ferris, G. Olivera, and T. R. Mackie. Optimizing the delivery of radiation to cancer patients. SIAM Review, 41:721–744, 1999.

    Article  MATH  Google Scholar 

  39. D. M. Shepard, M. C. Ferris, R. Ove, and L. Ma. Inverse treatment planning for Gamma Knife radiosurgery. Medical Physics, 27:2748–2756, 2000.

    Article  PubMed  CAS  ADS  Google Scholar 

  40. D.M. Shepard, M.A. Earl, X.A. Li, and C. Yu. Direct aperture optimization: A turnkey solution for step-and-shoot IMRT. Medical Physics, 29:1007–1018, 2002.

    Article  PubMed  CAS  Google Scholar 

  41. R. A. Stone, V. Smith, and L. Verhey. Inverse planning for the Gamma Knife. Medical Physics, 20:865, 1993.

    Google Scholar 

  42. J. Wang. Packing of unequal spheres and automated radiosurgical treatment planning. Journal of Combinatorial Optimization, 3:453–463, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  43. S Webb. Optimisation of conformal radiotherapy dose distributions by simulated annealing. Physics in Medicine and Biology, 34(10): 1349–1370, 1989.

    Article  PubMed  CAS  MathSciNet  ADS  Google Scholar 

  44. S. Webb. Inverse planning for imrt: the role of simulated annealing. In E. Sternick, editor, The Theory and Practice of Intensity Modulated Radiation Therapy. Advanced Medical Publishing, 1997.

    Google Scholar 

  45. S. Webb. Configuration options for intensity-modulated radiation therapy usi ng multiple static fields shaped by a multileaf collimator. Physics in Medicine and Biology, 43:241–260, 1998.

    Article  PubMed  CAS  ADS  Google Scholar 

  46. S. Webb. Configuration options for intensity-modulated radiation therapy using multiple static fields shaped by a multileaf collimator. II: Constraints and limitations on 2D modulation. Physics in Medicine and Biology, 43:1481–1495, 1998.

    Article  PubMed  CAS  ADS  Google Scholar 

  47. A. Wu, G. Lindner, and A. H. Maitz et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. International Journal of Radiation Oncology, Biology and Physics, 18(4):941–949, 1990.

    Article  CAS  Google Scholar 

  48. Q. J. Wu. Sphere packing using morphological analysis. In D.-Z. Du, P. Pardalos, and J. Wang, editors, Discrete Mathematical Problems with Medical Applications, volume 55 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 45–54. American Mathematical Society, 2000.

    Google Scholar 

  49. Q. J. Wu and J. D. Bourland. Morphology-guided radiosurgery treatment planning and optimization for multiple isocenters. Medical Physics, 26(10):2151–2160, 1999.

    Article  PubMed  CAS  ADS  Google Scholar 

  50. Q. J. Wu, J. Wang, and C. H. Sibata. Optimization problems in 3D con-formal radiation therapy. In D.-Z. Du, P. Pardalos, and J. Wang, editors, Discrete Mathematical Problems with Medical Applications, volume 55 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 183–194. American Mathematical Society, 2000.

    Google Scholar 

  51. P. Xia and L.J. Verhey. Multileaf collimator leaf sequencing algorithm for intensity modula ted beams with multiple static segments. Medical Physics, 25(8): 1424–1434, 1998.

    Article  PubMed  CAS  ADS  Google Scholar 

  52. Y. Yan, H. Shu, and X. Bao. Clinical treatment planning optimization by Powell’s method for Gamma unit treatment system. International Journal of Radiation Oncology, Biology and Physics, 39:247–254, 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ferris, M.C., Meyer, R.R., D’Souza, W. (2006). Radiation Treatment Planning: Mixed Integer Programming Formulations and Approaches. In: Appa, G., Pitsoulis, L., Williams, H.P. (eds) Handbook on Modelling for Discrete Optimization. International Series in Operations Research & Management Science, vol 88. Springer, Boston, MA. https://doi.org/10.1007/0-387-32942-0_11

Download citation

Publish with us

Policies and ethics